Solovay functions and their applications in algorithmic randomness
Classical versions of Kolmogorov complexity are incomputable. Nevertheless, in 1975 Solovay showed that there are computable functions f≥K+O(1) such that for infinitely many strings σ, f(σ)=K(σ)+O(1), where K denotes prefix-free Kolmogorov complexity. Such an f is now called a Solovay function. We p...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
18 May 2015
|
| In: |
Journal of computer and system sciences
Year: 2015, Volume: 81, Issue: 8, Pages: 1575-1591 |
| ISSN: | 1090-2724 |
| DOI: | 10.1016/j.jcss.2015.04.004 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jcss.2015.04.004 Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0022000015000422 |
| Author Notes: | Laurent Bienvenu, Rod Downey, André Nies, Wolfgang Merkle |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1698758553 | ||
| 003 | DE-627 | ||
| 005 | 20220818095540.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200525s2015 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.jcss.2015.04.004 |2 doi | |
| 035 | |a (DE-627)1698758553 | ||
| 035 | |a (DE-599)KXP1698758553 | ||
| 035 | |a (OCoLC)1341326406 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 28 |2 sdnb | ||
| 100 | 1 | |a Bienvenu, Laurent |e VerfasserIn |0 (DE-588)1162870516 |0 (DE-627)1026974488 |0 (DE-576)50764641X |4 aut | |
| 245 | 1 | 0 | |a Solovay functions and their applications in algorithmic randomness |c Laurent Bienvenu, Rod Downey, André Nies, Wolfgang Merkle |
| 264 | 1 | |c 18 May 2015 | |
| 300 | |a 17 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 25.05.2020 | ||
| 520 | |a Classical versions of Kolmogorov complexity are incomputable. Nevertheless, in 1975 Solovay showed that there are computable functions f≥K+O(1) such that for infinitely many strings σ, f(σ)=K(σ)+O(1), where K denotes prefix-free Kolmogorov complexity. Such an f is now called a Solovay function. We prove that many classical results about K can be obtained by replacing K by a Solovay function. For example, the three following properties of a function g all hold for the function K.(i)The sum of the terms ∑n2−g(n) is a Martin-Löf random real.(ii)A sequence A is Martin-Löf random if and only if g(A↾n)>n−O(1).(iii)A sequence A is K-trivial if and only if K(A↾n)<g(n)+O(1). We show that when fixing any of these three properties, then among all computable functions exactly the Solovay functions possess this property. Furthermore, this characterization extends accordingly to the larger class of right-c.e. functions. | ||
| 650 | 4 | |a Algorithmic randomness | |
| 650 | 4 | |a Kolmogorov complexity | |
| 650 | 4 | |a Solovay functions | |
| 700 | 1 | |a Downey, Rod |e VerfasserIn |4 aut | |
| 700 | 1 | |a Nies, André |e VerfasserIn |4 aut | |
| 700 | 1 | |a Merkle, Wolfgang |e VerfasserIn |0 (DE-588)1049898400 |0 (DE-627)782852831 |0 (DE-576)40388201X |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of computer and system sciences |d San Diego, Calif. [u.a.] : Elsevier, 1967 |g 81(2015), 8, Seite 1575-1591 |h Online-Ressource |w (DE-627)26689254X |w (DE-600)1469171-1 |w (DE-576)103373195 |x 1090-2724 |7 nnas |a Solovay functions and their applications in algorithmic randomness |
| 773 | 1 | 8 | |g volume:81 |g year:2015 |g number:8 |g pages:1575-1591 |g extent:17 |a Solovay functions and their applications in algorithmic randomness |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.jcss.2015.04.004 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0022000015000422 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200525 | ||
| 993 | |a Article | ||
| 994 | |a 2015 | ||
| 998 | |g 1049898400 |a Merkle, Wolfgang |m 1049898400:Merkle, Wolfgang |d 110000 |d 110300 |e 110000PM1049898400 |e 110300PM1049898400 |k 0/110000/ |k 1/110000/110300/ |p 4 |y j | ||
| 999 | |a KXP-PPN1698758553 |e 3670749810 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Gesehen am 25.05.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1698758553","language":["eng"],"title":[{"title":"Solovay functions and their applications in algorithmic randomness","title_sort":"Solovay functions and their applications in algorithmic randomness"}],"person":[{"family":"Bienvenu","given":"Laurent","roleDisplay":"VerfasserIn","display":"Bienvenu, Laurent","role":"aut"},{"role":"aut","display":"Downey, Rod","roleDisplay":"VerfasserIn","given":"Rod","family":"Downey"},{"given":"André","family":"Nies","role":"aut","roleDisplay":"VerfasserIn","display":"Nies, André"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Merkle, Wolfgang","given":"Wolfgang","family":"Merkle"}],"physDesc":[{"extent":"17 S."}],"relHost":[{"part":{"year":"2015","issue":"8","pages":"1575-1591","volume":"81","text":"81(2015), 8, Seite 1575-1591","extent":"17"},"titleAlt":[{"title":"JCSS"}],"pubHistory":["1.1967 -"],"language":["eng"],"recId":"26689254X","disp":"Solovay functions and their applications in algorithmic randomnessJournal of computer and system sciences","note":["Gesehen am 04.06.2020"],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"subtitle":"JCSS","title":"Journal of computer and system sciences","title_sort":"Journal of computer and system sciences"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1090-2724"],"eki":["26689254X"],"zdb":["1469171-1"]},"origin":[{"publisherPlace":"San Diego, Calif. [u.a.] ; New York, NY [u.a.] ; San Diego, Calif. [u.a.]","dateIssuedKey":"1967","publisher":"Elsevier ; Acad. Press ; Acad. Press","dateIssuedDisp":"1967-"}]}],"origin":[{"dateIssuedDisp":"18 May 2015","dateIssuedKey":"2015"}],"id":{"doi":["10.1016/j.jcss.2015.04.004"],"eki":["1698758553"]},"name":{"displayForm":["Laurent Bienvenu, Rod Downey, André Nies, Wolfgang Merkle"]}} | ||
| SRT | |a BIENVENULASOLOVAYFUN1820 | ||