Scaling relations and multicritical phenomena from functional renormalization

We investigate multicritical phenomena in O(N)+O(M) models by means of nonperturbative renormalization group equations. This constitutes an elementary building block for the study of competing orders in a variety of physical systems. To identify possible multicritical points in phase diagrams with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Böttcher, Igor (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 June 2015
In: Physical review. E, Statistical, nonlinear, and soft matter physics
Year: 2015, Jahrgang: 91, Heft: 6
ISSN:1550-2376
DOI:10.1103/PhysRevE.91.062112
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevE.91.062112
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevE.91.062112
Volltext
Verfasserangaben:Igor Boettcher
Beschreibung
Zusammenfassung:We investigate multicritical phenomena in O(N)+O(M) models by means of nonperturbative renormalization group equations. This constitutes an elementary building block for the study of competing orders in a variety of physical systems. To identify possible multicritical points in phase diagrams with two ordered phases, we compute the stability of isotropic and decoupled fixed point solutions from scaling potentials of single-field models. We verify the validity of Aharony's scaling relation within the scale-dependent derivative expansion of the effective average action. We discuss implications for the analysis of multicritical phenomena with truncated flow equations. These findings are an important step towards studies of competing orders and multicritical quantum phase transitions within the framework of functional renormalization.
Beschreibung:Gesehen am 27.05.2020
Beschreibung:Online Resource
ISSN:1550-2376
DOI:10.1103/PhysRevE.91.062112