From quantum to classical dynamics: the relativistic [omnikron](Nu)O(N) model in the framework of the real-time functional renormalization group

We investigate the transition from unitary to dissipative dynamics in the relativistic O(N) vector model with the λ(φ2)2 interaction using the nonperturbative functional renormalization group in the real-time formalism. In thermal equilibrium, the theory is characterized by two scales, the interacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mesterházy, David (VerfasserIn) , Stockemer, Jan H. (VerfasserIn) , Tanizaki, Yuya (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 6 October 2015
In: Physical review. D, Particles, fields, gravitation, and cosmology
Year: 2015, Jahrgang: 92, Heft: 7
ISSN:1550-2368
DOI:10.1103/PhysRevD.92.076001
Online-Zugang:Verlag, Volltext: https://doi.org/10.1103/PhysRevD.92.076001
Verlag: https://link.aps.org/doi/10.1103/PhysRevD.92.076001
Volltext
Verfasserangaben:D. Mesterházy, J.H. Stockemer, and Y. Tanizaki
Beschreibung
Zusammenfassung:We investigate the transition from unitary to dissipative dynamics in the relativistic O(N) vector model with the λ(φ2)2 interaction using the nonperturbative functional renormalization group in the real-time formalism. In thermal equilibrium, the theory is characterized by two scales, the interaction range for coherent scattering of particles and the mean free path determined by the rate of incoherent collisions with excitations in the thermal medium. Their competition determines the renormalization group flow and the effective dynamics of the model. Here we quantify the dynamic properties of the model in terms of the scale-dependent dynamic critical exponent z in the limit of large temperatures and in 2≤d≤4 spatial dimensions. We contrast our results to the behavior expected at vanishing temperature and address the question of the appropriate dynamic universality class for the given microscopic theory.
Beschreibung:Gesehen am 29.05.2020
Beschreibung:Online Resource
ISSN:1550-2368
DOI:10.1103/PhysRevD.92.076001