Nonlinear ill-posed problem analysis in model-based parameter estimation and experimental design

Discrete ill-posed problems are often encountered in engineering applications. Still, their sound analysis is not yet common practice and difficulties arising in the determination of uncertain parameters are typically not assigned properly. This contribution provides a tutorial review on methods for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: López Cárdenas, Diana Carolina (VerfasserIn) , Barz, Tilman (VerfasserIn) , Körkel, Stefan (VerfasserIn) , Wozny, Günter (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 12 March 2015
In: Computers & chemical engineering
Year: 2015, Jahrgang: 77, Pages: 24-42
ISSN:0098-1354
DOI:10.1016/j.compchemeng.2015.03.002
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.compchemeng.2015.03.002
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0098135415000733
Volltext
Verfasserangaben:Diana C. López C., Tilman Barz, Stefan Körkel, Günter Wozny
Beschreibung
Zusammenfassung:Discrete ill-posed problems are often encountered in engineering applications. Still, their sound analysis is not yet common practice and difficulties arising in the determination of uncertain parameters are typically not assigned properly. This contribution provides a tutorial review on methods for identifiability analysis, regularization techniques and optimal experimental design. A guideline for the analysis and classification of nonlinear ill-posed problems to detect practical identifiability problems is given. Techniques for the regularization of experimental design problems resulting from ill-posed parameter estimations are discussed. Applications are presented for three different case studies of increasing complexity.
Beschreibung:Gesehen am 02.06.2020
Beschreibung:Online Resource
ISSN:0098-1354
DOI:10.1016/j.compchemeng.2015.03.002