Conditional random fields meet deep neural networks for semantic segmentation: combining probabilistic graphical models with deep learning for structured prediction

Semantic segmentation is the task of labeling every pixel in an image with a predefined object category. It has numerous applications in scenarios where the detailed understanding of an image is required, such as in autonomous vehicles and medical diagnosis. This problem has traditionally been solve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Arnab, Anurag (VerfasserIn) , Zheng, Shuai (VerfasserIn) , Jayasumana, Sadeep (VerfasserIn) , Romera-Paredes, Bernardino (VerfasserIn) , Larsson, Måns (VerfasserIn) , Kirillov, Alexander (VerfasserIn) , Savchynskyy, Bogdan (VerfasserIn) , Rother, Carsten (VerfasserIn) , Kahl, Fredrik (VerfasserIn) , Torr, Philip H.S. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 9 January 2018
In: IEEE signal processing magazine
Year: 2018, Jahrgang: 35, Heft: 1, Pages: 37-52
ISSN:1558-0792
DOI:10.1109/MSP.2017.2762355
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1109/MSP.2017.2762355
Verlag, lizenzpflichtig, Volltext: https://ieeexplore.ieee.org/document/8254255
Volltext
Verfasserangaben:Anurag Arnab, Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Måns Larsson, Alexander Kirillov, Bogdan Savchynskyy, Carsten Rother, Fredrik Kahl, and Philip H.S. Torr

MARC

LEADER 00000caa a2200000 c 4500
001 1699816352
003 DE-627
005 20220818112925.0
007 cr uuu---uuuuu
008 200604s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/MSP.2017.2762355  |2 doi 
035 |a (DE-627)1699816352 
035 |a (DE-599)KXP1699816352 
035 |a (OCoLC)1341328597 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Arnab, Anurag  |e VerfasserIn  |0 (DE-588)1207935921  |0 (DE-627)1694257231  |4 aut 
245 1 0 |a Conditional random fields meet deep neural networks for semantic segmentation  |b combining probabilistic graphical models with deep learning for structured prediction  |c Anurag Arnab, Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Måns Larsson, Alexander Kirillov, Bogdan Savchynskyy, Carsten Rother, Fredrik Kahl, and Philip H.S. Torr 
264 1 |c 9 January 2018 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 04.06.2020 
520 |a Semantic segmentation is the task of labeling every pixel in an image with a predefined object category. It has numerous applications in scenarios where the detailed understanding of an image is required, such as in autonomous vehicles and medical diagnosis. This problem has traditionally been solved with probabilistic models known as conditional random fields (CRFs) due to their ability to model the relationships between the pixels being predicted. However, deep neural networks (DNNs) recently have been shown to excel at a wide range of computer vision problems due to their ability to automatically learn rich feature representations from data, as opposed to traditional handcrafted features. The idea of combining CRFs and DNNs have achieved state-of-the-art results in a number of domains. We review the literature on combining the modeling power of CRFs with the representation-learning ability of DNNs, ranging from early work that combines these two techniques as independent stages of a common pipeline to recent approaches that embed inference of probabilistic models directly in the neural network itself. Finally, we summarize future research directions. 
650 4 |a Computational modeling 
650 4 |a Computer vision 
650 4 |a conditional random fields 
650 4 |a CRF 
650 4 |a deep learning 
650 4 |a deep neural networks 
650 4 |a DNN 
650 4 |a Feature extraction 
650 4 |a image segmentation 
650 4 |a Image segmentation 
650 4 |a learning (artificial intelligence) 
650 4 |a neural nets 
650 4 |a pixel labeling 
650 4 |a pixels 
650 4 |a probabilistic graphical models 
650 4 |a semantic segmentation 
650 4 |a Semantics 
650 4 |a statistical analysis 
650 4 |a structured prediction 
650 4 |a Visualization 
700 1 |a Zheng, Shuai  |e VerfasserIn  |4 aut 
700 1 |a Jayasumana, Sadeep  |e VerfasserIn  |4 aut 
700 1 |a Romera-Paredes, Bernardino  |e VerfasserIn  |4 aut 
700 1 |a Larsson, Måns  |e VerfasserIn  |4 aut 
700 1 |a Kirillov, Alexander  |d 1991-  |e VerfasserIn  |0 (DE-588)1176142615  |0 (DE-627)1047277964  |0 (DE-576)516543067  |4 aut 
700 1 |a Savchynskyy, Bogdan  |e VerfasserIn  |0 (DE-588)1066503605  |0 (DE-627)817659439  |0 (DE-576)426018737  |4 aut 
700 1 |a Rother, Carsten  |e VerfasserIn  |0 (DE-588)1181464692  |0 (DE-627)1662676883  |4 aut 
700 1 |a Kahl, Fredrik  |e VerfasserIn  |4 aut 
700 1 |a Torr, Philip H.S.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE signal processing magazine  |d New York, NY : IEEE, 1991  |g 35(2018), 1, Seite 37-52  |h Online-Ressource  |w (DE-627)32529562X  |w (DE-600)2035189-6  |w (DE-576)094081077  |x 1558-0792  |7 nnas 
773 1 8 |g volume:35  |g year:2018  |g number:1  |g pages:37-52  |g extent:16  |a Conditional random fields meet deep neural networks for semantic segmentation combining probabilistic graphical models with deep learning for structured prediction 
856 4 0 |u https://doi.org/10.1109/MSP.2017.2762355  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://ieeexplore.ieee.org/document/8254255  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200604 
993 |a Article 
994 |a 2018 
998 |g 1181464692  |a Rother, Carsten  |m 1181464692:Rother, Carsten  |d 700000  |d 708070  |e 700000PR1181464692  |e 708070PR1181464692  |k 0/700000/  |k 1/700000/708070/  |p 8 
998 |g 1066503605  |a Savchynskyy, Bogdan  |m 1066503605:Savchynskyy, Bogdan  |d 700000  |d 708070  |e 700000PS1066503605  |e 708070PS1066503605  |k 0/700000/  |k 1/700000/708070/  |p 7 
998 |g 1176142615  |a Kirillov, Alexander  |m 1176142615:Kirillov, Alexander  |d 700000  |d 708070  |e 700000PK1176142615  |e 708070PK1176142615  |k 0/700000/  |k 1/700000/708070/  |p 6 
999 |a KXP-PPN1699816352  |e 3682757104 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"subtitle":"combining probabilistic graphical models with deep learning for structured prediction","title":"Conditional random fields meet deep neural networks for semantic segmentation","title_sort":"Conditional random fields meet deep neural networks for semantic segmentation"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Arnab, Anurag","given":"Anurag","family":"Arnab"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Zheng, Shuai","given":"Shuai","family":"Zheng"},{"display":"Jayasumana, Sadeep","roleDisplay":"VerfasserIn","role":"aut","family":"Jayasumana","given":"Sadeep"},{"display":"Romera-Paredes, Bernardino","roleDisplay":"VerfasserIn","role":"aut","family":"Romera-Paredes","given":"Bernardino"},{"given":"Måns","family":"Larsson","role":"aut","display":"Larsson, Måns","roleDisplay":"VerfasserIn"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Kirillov, Alexander","given":"Alexander","family":"Kirillov"},{"family":"Savchynskyy","given":"Bogdan","roleDisplay":"VerfasserIn","display":"Savchynskyy, Bogdan","role":"aut"},{"given":"Carsten","family":"Rother","role":"aut","display":"Rother, Carsten","roleDisplay":"VerfasserIn"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Kahl, Fredrik","given":"Fredrik","family":"Kahl"},{"display":"Torr, Philip H.S.","roleDisplay":"VerfasserIn","role":"aut","family":"Torr","given":"Philip H.S."}],"language":["eng"],"recId":"1699816352","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 04.06.2020"],"id":{"doi":["10.1109/MSP.2017.2762355"],"eki":["1699816352"]},"origin":[{"dateIssuedDisp":"9 January 2018","dateIssuedKey":"2018"}],"name":{"displayForm":["Anurag Arnab, Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Måns Larsson, Alexander Kirillov, Bogdan Savchynskyy, Carsten Rother, Fredrik Kahl, and Philip H.S. Torr"]},"relHost":[{"title":[{"title_sort":"IEEE signal processing magazine","title":"IEEE signal processing magazine","subtitle":"a publication of the IEEE Signal Processing Society"}],"disp":"Institute of Electrical and Electronics EngineersIEEE signal processing magazine","note":["Gesehen am 29.08.22"],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"32529562X","language":["eng"],"corporate":[{"display":"Institute of Electrical and Electronics Engineers","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"Herausgebendes Organ","display":"IEEE Signal Processing Society","role":"isb"}],"pubHistory":["Volume 8, Number 1 (January 1991)-"],"part":{"year":"2018","issue":"1","pages":"37-52","text":"35(2018), 1, Seite 37-52","volume":"35","extent":"16"},"titleAlt":[{"title":"Signal processing magazine"}],"origin":[{"publisherPlace":"New York, NY","publisher":"IEEE","dateIssuedKey":"1991","dateIssuedDisp":"1991-"}],"id":{"issn":["1558-0792"],"eki":["32529562X"],"zdb":["2035189-6"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"16 S."}]} 
SRT |a ARNABANURACONDITIONA9201