Dimensional crossover of nonrelativistic bosons

We investigate how confining a transverse spatial dimension influences the few- and many-body properties of nonrelativistic bosons with pointlike interactions. Our main focus is on the dimensional crossover from three to two dimensions, which is of relevance for ultracold-atom experiments. Using fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lammers, Sören (VerfasserIn) , Böttcher, Igor (VerfasserIn) , Wetterich, Christof (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 27 June 2016
In: Physical review
Year: 2016, Jahrgang: 93, Heft: 6, Pages: 1-16
ISSN:2469-9934
DOI:10.1103/PhysRevA.93.063631
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.93.063631
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.93.063631
Volltext
Verfasserangaben:Soeren Lammers, Igor Boettcher, and Christof Wetterich
Beschreibung
Zusammenfassung:We investigate how confining a transverse spatial dimension influences the few- and many-body properties of nonrelativistic bosons with pointlike interactions. Our main focus is on the dimensional crossover from three to two dimensions, which is of relevance for ultracold-atom experiments. Using functional-renormalization-group equations and T-matrix calculations we study how the phase transition temperature changes as a function of the spatial extent of the transverse dimension and relate the three- and two-dimensional s-wave scattering lengths. The analysis reveals how the properties of the lower-dimensional system are inherited from the higher-dimensional one during renormalization-group evolution. We limit the discussion to confinements in a potential well with periodic boundary conditions and argue why this qualitatively captures the physics of other compactifications such as transverse harmonic confinement as in cold-atom experiments.
Beschreibung:Gesehen am 12.06.2020
Beschreibung:Online Resource
ISSN:2469-9934
DOI:10.1103/PhysRevA.93.063631