A posteriori error estimation for the fractional step theta discretization of the incompressible Navier-Stokes equations

In this work, we derive a goal-oriented a posteriori error estimator for the error due to time discretization. As time discretization scheme we consider the fractional step theta method, that consists of three subsequent steps of the one-step theta method. In every sub-step, the full incompressible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Meidner, Dominik (VerfasserIn) , Richter, Thomas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2015
In: Computer methods in applied mechanics and engineering
Year: 2014, Jahrgang: 288, Pages: 45-59
ISSN:1879-2138
DOI:10.1016/j.cma.2014.11.031
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.cma.2014.11.031
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0045782514004642
Volltext
Verfasserangaben:Dominik Meidner, Thomas Richter

MARC

LEADER 00000caa a2200000 c 4500
001 170049872X
003 DE-627
005 20220818120844.0
007 cr uuu---uuuuu
008 200612r20152014xx |||||o 00| ||eng c
024 7 |a 10.1016/j.cma.2014.11.031  |2 doi 
035 |a (DE-627)170049872X 
035 |a (DE-599)KXP170049872X 
035 |a (OCoLC)1341339372 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Meidner, Dominik  |e VerfasserIn  |0 (DE-588)134097645  |0 (DE-627)560468865  |0 (DE-576)300310587  |4 aut 
245 1 2 |a A posteriori error estimation for the fractional step theta discretization of the incompressible Navier-Stokes equations  |c Dominik Meidner, Thomas Richter 
264 1 |c 2015 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online 3 December 2014 
500 |a Gesehen am 12.06.2020 
520 |a In this work, we derive a goal-oriented a posteriori error estimator for the error due to time discretization. As time discretization scheme we consider the fractional step theta method, that consists of three subsequent steps of the one-step theta method. In every sub-step, the full incompressible system has to be solved (in contrast to time integrators of operator splitting type). The resulting fractional step theta method combines various desirable properties like second order accuracy, strong A-stability and very little numerical dissipation. The derived error estimator is based on a mathematical trick: we define an intermediate time-discretization scheme based on a Petrov-Galerkin formulation. This method is up to a numerical quadrature error equivalent to the theta time stepping scheme. The error estimator is assembled as one weighted residual term given by the Dual Weighted Residual method measuring the error between real solution and solution to the Petrov-Galerkin formulation (that at no time has to be calculated) and one additional residual estimating the discrepancy between actual time stepping scheme used for simulation and the intermediate Petrov-Galerkin formulation. 
534 |c 2014 
650 4 |a Adaptivity 
650 4 |a Error estimation 
650 4 |a Fractional step theta 
650 4 |a Incompressible Navier-Stokes 
650 4 |a Time stepping 
700 1 |a Richter, Thomas  |e VerfasserIn  |0 (DE-588)1025367154  |0 (DE-627)722167822  |0 (DE-576)370268547  |4 aut 
773 0 8 |i Enthalten in  |t Computer methods in applied mechanics and engineering  |d Amsterdam [u.a.] : Elsevier Science, 1972  |g 288(2015), Seite 45-59  |h Online-Ressource  |w (DE-627)306715848  |w (DE-600)1501322-4  |w (DE-576)094531285  |x 1879-2138  |7 nnas  |a A posteriori error estimation for the fractional step theta discretization of the incompressible Navier-Stokes equations 
773 1 8 |g volume:288  |g year:2015  |g pages:45-59  |g extent:15  |a A posteriori error estimation for the fractional step theta discretization of the incompressible Navier-Stokes equations 
856 4 0 |u https://doi.org/10.1016/j.cma.2014.11.031  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0045782514004642  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200612 
993 |a Article 
994 |a 2015 
998 |g 1025367154  |a Richter, Thomas  |m 1025367154:Richter, Thomas  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PR1025367154  |e 110200PR1025367154  |e 110000PR1025367154  |e 110400PR1025367154  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 2  |y j 
999 |a KXP-PPN170049872X  |e 3686607441 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Available online 3 December 2014","Gesehen am 12.06.2020"],"language":["eng"],"recId":"170049872X","person":[{"family":"Meidner","given":"Dominik","roleDisplay":"VerfasserIn","display":"Meidner, Dominik","role":"aut"},{"role":"aut","display":"Richter, Thomas","roleDisplay":"VerfasserIn","given":"Thomas","family":"Richter"}],"title":[{"title_sort":"posteriori error estimation for the fractional step theta discretization of the incompressible Navier-Stokes equations","title":"A posteriori error estimation for the fractional step theta discretization of the incompressible Navier-Stokes equations"}],"physDesc":[{"extent":"15 S."}],"relHost":[{"pubHistory":["1.1972 - 200.2011; Vol. 201/204.2012 -"],"part":{"extent":"15","text":"288(2015), Seite 45-59","volume":"288","pages":"45-59","year":"2015"},"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"A posteriori error estimation for the fractional step theta discretization of the incompressible Navier-Stokes equationsComputer methods in applied mechanics and engineering","note":["Gesehen am 06.01.2021"],"recId":"306715848","language":["eng"],"title":[{"title_sort":"Computer methods in applied mechanics and engineering","title":"Computer methods in applied mechanics and engineering"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Amsterdam [u.a.]","publisher":"Elsevier Science","dateIssuedKey":"1972","dateIssuedDisp":"1972-"}],"id":{"zdb":["1501322-4"],"eki":["306715848"],"issn":["1879-2138"]}}],"name":{"displayForm":["Dominik Meidner, Thomas Richter"]},"origin":[{"dateIssuedKey":"2015","dateIssuedDisp":"2015"}],"id":{"eki":["170049872X"],"doi":["10.1016/j.cma.2014.11.031"]}} 
SRT |a MEIDNERDOMPOSTERIORI2015