The Calderón problem for the fractional Schrödinger equation with drift

We investigate the Calderón problem for the fractional Schrödinger equation with drift, proving that the unknown drift and potential in a bounded domain can be determined simultaneously and uniquely by an infinite number of exterior measurements. In particular, in contrast to its local analogue, t...

Full description

Saved in:
Bibliographic Details
Main Authors: Cekić, Mihajlo (Author) , Lin, Yi-Hsuan (Author) , Rüland, Angkana (Author)
Format: Article (Journal)
Language:English
Published: 24 April 2020
In: Calculus of variations and partial differential equations
Year: 2020, Volume: 59, Issue: 3, Pages: 1-46
ISSN:1432-0835
DOI:10.1007/s00526-020-01740-6
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00526-020-01740-6
Get full text
Author Notes:Mihajlo Cekić, Yi-Hsuan Lin, Angkana Rüland

MARC

LEADER 00000caa a2200000 c 4500
001 1700570404
003 DE-627
005 20220818121622.0
007 cr uuu---uuuuu
008 200615s2020 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00526-020-01740-6  |2 doi 
035 |a (DE-627)1700570404 
035 |a (DE-599)KXP1700570404 
035 |a (OCoLC)1341339501 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Cekić, Mihajlo  |e VerfasserIn  |0 (DE-588)1211967158  |0 (DE-627)170057227X  |4 aut 
245 1 4 |a The Calderón problem for the fractional Schrödinger equation with drift  |c Mihajlo Cekić, Yi-Hsuan Lin, Angkana Rüland 
264 1 |c 24 April 2020 
300 |a 46 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 15.06.2020 
520 |a We investigate the Calderón problem for the fractional Schrödinger equation with drift, proving that the unknown drift and potential in a bounded domain can be determined simultaneously and uniquely by an infinite number of exterior measurements. In particular, in contrast to its local analogue, this nonlocal problem does not enjoy a gauge invariance. The uniqueness result is complemented by an associated logarithmic stability estimate under suitable apriori assumptions. Also uniqueness under finitely many generic measurements is discussed. Here the genericity is obtained through singularity theory which might also be interesting in the context of hybrid inverse problems. Combined with the results from Ghosh et al. (Uniqueness and reconstruction for the fractional Calderón problem with a single easurement, 2018. arXiv:1801.04449), this yields a finite measurements constructive reconstruction algorithm for the fractional Calderón problem with drift. The inverse problem is formulated as a partial data type nonlocal problem and it is considered in any dimension $$n\ge 1$$n≥1. 
700 1 |a Lin, Yi-Hsuan  |e VerfasserIn  |0 (DE-588)121666059X  |0 (DE-627)1727911415  |4 aut 
700 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
773 0 8 |i Enthalten in  |t Calculus of variations and partial differential equations  |d Berlin : Springer, 1993  |g 59(2020), 3, Artikel-ID 91, Seite 1-46  |h Online-Ressource  |w (DE-627)265508274  |w (DE-600)1464202-5  |w (DE-576)074889710  |x 1432-0835  |7 nnas  |a The Calderón problem for the fractional Schrödinger equation with drift 
773 1 8 |g volume:59  |g year:2020  |g number:3  |g elocationid:91  |g pages:1-46  |g extent:46  |a The Calderón problem for the fractional Schrödinger equation with drift 
856 4 0 |u https://doi.org/10.1007/s00526-020-01740-6  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200615 
993 |a Article 
994 |a 2020 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PR1051987679  |e 110200PR1051987679  |e 110000PR1051987679  |e 110400PR1051987679  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 3  |y j 
999 |a KXP-PPN1700570404  |e 3687273466 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Mihajlo Cekić, Yi-Hsuan Lin, Angkana Rüland"]},"id":{"doi":["10.1007/s00526-020-01740-6"],"eki":["1700570404"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"24 April 2020"}],"relHost":[{"title":[{"title_sort":"Calculus of variations and partial differential equations","title":"Calculus of variations and partial differential equations"}],"pubHistory":["1.1993 -"],"titleAlt":[{"title":"Calculus of variations"}],"part":{"extent":"46","volume":"59","text":"59(2020), 3, Artikel-ID 91, Seite 1-46","issue":"3","pages":"1-46","year":"2020"},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"The Calderón problem for the fractional Schrödinger equation with driftCalculus of variations and partial differential equations","note":["Gesehen am 01.11.05"],"language":["eng"],"recId":"265508274","origin":[{"publisherPlace":"Berlin ; Heidelberg","dateIssuedDisp":"1993-","dateIssuedKey":"1993","publisher":"Springer"}],"id":{"zdb":["1464202-5"],"eki":["265508274"],"issn":["1432-0835"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"46 S."}],"person":[{"family":"Cekić","given":"Mihajlo","display":"Cekić, Mihajlo","roleDisplay":"VerfasserIn","role":"aut"},{"display":"Lin, Yi-Hsuan","roleDisplay":"VerfasserIn","role":"aut","family":"Lin","given":"Yi-Hsuan"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Rüland, Angkana","given":"Angkana","family":"Rüland"}],"title":[{"title_sort":"Calderón problem for the fractional Schrödinger equation with drift","title":"The Calderón problem for the fractional Schrödinger equation with drift"}],"recId":"1700570404","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 15.06.2020"]} 
SRT |a CEKICMIHAJCALDERONPR2420