The Calderón problem for the fractional Schrödinger equation with drift
We investigate the Calderón problem for the fractional Schrödinger equation with drift, proving that the unknown drift and potential in a bounded domain can be determined simultaneously and uniquely by an infinite number of exterior measurements. In particular, in contrast to its local analogue, t...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
24 April 2020
|
| In: |
Calculus of variations and partial differential equations
Year: 2020, Volume: 59, Issue: 3, Pages: 1-46 |
| ISSN: | 1432-0835 |
| DOI: | 10.1007/s00526-020-01740-6 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00526-020-01740-6 |
| Author Notes: | Mihajlo Cekić, Yi-Hsuan Lin, Angkana Rüland |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1700570404 | ||
| 003 | DE-627 | ||
| 005 | 20220818121622.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200615s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00526-020-01740-6 |2 doi | |
| 035 | |a (DE-627)1700570404 | ||
| 035 | |a (DE-599)KXP1700570404 | ||
| 035 | |a (OCoLC)1341339501 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Cekić, Mihajlo |e VerfasserIn |0 (DE-588)1211967158 |0 (DE-627)170057227X |4 aut | |
| 245 | 1 | 4 | |a The Calderón problem for the fractional Schrödinger equation with drift |c Mihajlo Cekić, Yi-Hsuan Lin, Angkana Rüland |
| 264 | 1 | |c 24 April 2020 | |
| 300 | |a 46 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 15.06.2020 | ||
| 520 | |a We investigate the Calderón problem for the fractional Schrödinger equation with drift, proving that the unknown drift and potential in a bounded domain can be determined simultaneously and uniquely by an infinite number of exterior measurements. In particular, in contrast to its local analogue, this nonlocal problem does not enjoy a gauge invariance. The uniqueness result is complemented by an associated logarithmic stability estimate under suitable apriori assumptions. Also uniqueness under finitely many generic measurements is discussed. Here the genericity is obtained through singularity theory which might also be interesting in the context of hybrid inverse problems. Combined with the results from Ghosh et al. (Uniqueness and reconstruction for the fractional Calderón problem with a single easurement, 2018. arXiv:1801.04449), this yields a finite measurements constructive reconstruction algorithm for the fractional Calderón problem with drift. The inverse problem is formulated as a partial data type nonlocal problem and it is considered in any dimension $$n\ge 1$$n≥1. | ||
| 700 | 1 | |a Lin, Yi-Hsuan |e VerfasserIn |0 (DE-588)121666059X |0 (DE-627)1727911415 |4 aut | |
| 700 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Calculus of variations and partial differential equations |d Berlin : Springer, 1993 |g 59(2020), 3, Artikel-ID 91, Seite 1-46 |h Online-Ressource |w (DE-627)265508274 |w (DE-600)1464202-5 |w (DE-576)074889710 |x 1432-0835 |7 nnas |a The Calderón problem for the fractional Schrödinger equation with drift |
| 773 | 1 | 8 | |g volume:59 |g year:2020 |g number:3 |g elocationid:91 |g pages:1-46 |g extent:46 |a The Calderón problem for the fractional Schrödinger equation with drift |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00526-020-01740-6 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200615 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PR1051987679 |e 110200PR1051987679 |e 110000PR1051987679 |e 110400PR1051987679 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 3 |y j | ||
| 999 | |a KXP-PPN1700570404 |e 3687273466 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Mihajlo Cekić, Yi-Hsuan Lin, Angkana Rüland"]},"id":{"doi":["10.1007/s00526-020-01740-6"],"eki":["1700570404"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"24 April 2020"}],"relHost":[{"title":[{"title_sort":"Calculus of variations and partial differential equations","title":"Calculus of variations and partial differential equations"}],"pubHistory":["1.1993 -"],"titleAlt":[{"title":"Calculus of variations"}],"part":{"extent":"46","volume":"59","text":"59(2020), 3, Artikel-ID 91, Seite 1-46","issue":"3","pages":"1-46","year":"2020"},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"The Calderón problem for the fractional Schrödinger equation with driftCalculus of variations and partial differential equations","note":["Gesehen am 01.11.05"],"language":["eng"],"recId":"265508274","origin":[{"publisherPlace":"Berlin ; Heidelberg","dateIssuedDisp":"1993-","dateIssuedKey":"1993","publisher":"Springer"}],"id":{"zdb":["1464202-5"],"eki":["265508274"],"issn":["1432-0835"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"46 S."}],"person":[{"family":"Cekić","given":"Mihajlo","display":"Cekić, Mihajlo","roleDisplay":"VerfasserIn","role":"aut"},{"display":"Lin, Yi-Hsuan","roleDisplay":"VerfasserIn","role":"aut","family":"Lin","given":"Yi-Hsuan"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Rüland, Angkana","given":"Angkana","family":"Rüland"}],"title":[{"title_sort":"Calderón problem for the fractional Schrödinger equation with drift","title":"The Calderón problem for the fractional Schrödinger equation with drift"}],"recId":"1700570404","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 15.06.2020"]} | ||
| SRT | |a CEKICMIHAJCALDERONPR2420 | ||