Performance analysis of radial basis function networks and multi-layer perceptron networks in modeling urban change: a case study

The majority of cities are rapidly growing. This makes the monitoring and modeling of urban change’s spatial patterns critical to urban planners, decision makers, and environment protection activists. Although a wide range of methods exists for modeling and simulating urban growth, machine learning...

Full description

Saved in:
Bibliographic Details
Main Authors: Shafizadeh Moghaddam, Hossein (Author) , Hagenauer, Julian Christian (Author) , Farajzadeh, Manuchehr (Author) , Helbich, Marco (Author)
Format: Article (Journal)
Language:English
Published: 11 March 2015
In: International journal of geographical information science
Year: 2015, Volume: 29, Issue: 4, Pages: 606-623
ISSN:1365-8824
DOI:10.1080/13658816.2014.993989
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1080/13658816.2014.993989
Get full text
Author Notes:Hossein Shafizadeh-Moghadam, Julian Hagenauer, Manuchehr Farajzadeh and Marco Helbich

MARC

LEADER 00000caa a2200000 c 4500
001 1700723537
003 DE-627
005 20220818122852.0
007 cr uuu---uuuuu
008 200617s2015 xx |||||o 00| ||eng c
024 7 |a 10.1080/13658816.2014.993989  |2 doi 
035 |a (DE-627)1700723537 
035 |a (DE-599)KXP1700723537 
035 |a (OCoLC)1341339463 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Shafizadeh Moghaddam, Hossein  |d 1983-  |e VerfasserIn  |0 (DE-588)1037042247  |0 (DE-627)751893129  |0 (DE-576)391049666  |4 aut 
245 1 0 |a Performance analysis of radial basis function networks and multi-layer perceptron networks in modeling urban change  |b a case study  |c Hossein Shafizadeh-Moghadam, Julian Hagenauer, Manuchehr Farajzadeh and Marco Helbich 
264 1 |c 11 March 2015 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 17.06.2020 
520 |a The majority of cities are rapidly growing. This makes the monitoring and modeling of urban change’s spatial patterns critical to urban planners, decision makers, and environment protection activists. Although a wide range of methods exists for modeling and simulating urban growth, machine learning (ML) techniques have received less attention despite their potential for producing highly accurate predictions of future urban extents. The aim of this study is to investigate two ML techniques, namely radial basis function network (RBFN) and multi-layer perceptron (MLP) networks, for modeling urban change. By predicting urban change for 2010, the models’ performance is evaluated by comparing results with a reference map and by using a set of pertinent statistical measures, such as average spatial distance deviation and figure of merit. The application of these techniques employs the case study area of Mumbai, India. The results show that both models, which were tested using the same explanatory variables, produced promising results in terms of predicting the size and extent of future urban areas. Although a close match between RBFN and MLP is observed, RBFN demonstrates higher spatial accuracy of prediction. Accordingly, RBFN was utilized to simulate urban change for 2020 and 2030. Overall, the study provides evidence that RBFN is a robust and efficient ML technique and can therefore be recommended for land use change modeling. 
650 4 |a GIS 
650 4 |a multi-layer perceptron network 
650 4 |a radial basis function network 
650 4 |a spatial accuracy assessment 
650 4 |a urban change 
700 1 |a Hagenauer, Julian Christian  |d 1980-  |e VerfasserIn  |0 (DE-588)1036794342  |0 (DE-627)751695610  |0 (DE-576)386858535  |4 aut 
700 1 |a Farajzadeh, Manuchehr  |e VerfasserIn  |4 aut 
700 1 |a Helbich, Marco  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t International journal of geographical information science  |d London : Taylor & Francis, 1997  |g 29(2015), 4, Seite 606-623  |h Online-Ressource  |w (DE-627)302468676  |w (DE-600)1491393-8  |w (DE-576)079720056  |x 1365-8824  |7 nnas  |a Performance analysis of radial basis function networks and multi-layer perceptron networks in modeling urban change a case study 
773 1 8 |g volume:29  |g year:2015  |g number:4  |g pages:606-623  |g extent:18  |a Performance analysis of radial basis function networks and multi-layer perceptron networks in modeling urban change a case study 
856 4 0 |u https://doi.org/10.1080/13658816.2014.993989  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200617 
993 |a Article 
994 |a 2015 
998 |g 1036794342  |a Hagenauer, Julian  |m 1036794342:Hagenauer, Julian  |p 2 
998 |g 1037042247  |a Shafizadeh Moghaddam, Hossein  |m 1037042247:Shafizadeh Moghaddam, Hossein  |p 1  |x j 
999 |a KXP-PPN1700723537  |e 3687711080 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"origin":[{"publisher":"Taylor & Francis","dateIssuedKey":"1997","dateIssuedDisp":"1997-","publisherPlace":"London"}],"id":{"issn":["1365-8824"],"zdb":["1491393-8"],"eki":["302468676"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"International journal of geographical information science","title":"International journal of geographical information science"}],"pubHistory":["11.1997 -"],"part":{"year":"2015","pages":"606-623","issue":"4","volume":"29","text":"29(2015), 4, Seite 606-623","extent":"18"},"titleAlt":[{"title":"IJGIS"}],"disp":"Performance analysis of radial basis function networks and multi-layer perceptron networks in modeling urban change a case studyInternational journal of geographical information science","note":["Gesehen am 18.11.24"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"recId":"302468676"}],"physDesc":[{"extent":"18 S."}],"id":{"doi":["10.1080/13658816.2014.993989"],"eki":["1700723537"]},"origin":[{"dateIssuedKey":"2015","dateIssuedDisp":"11 March 2015"}],"name":{"displayForm":["Hossein Shafizadeh-Moghadam, Julian Hagenauer, Manuchehr Farajzadeh and Marco Helbich"]},"language":["eng"],"recId":"1700723537","note":["Gesehen am 17.06.2020"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title_sort":"Performance analysis of radial basis function networks and multi-layer perceptron networks in modeling urban change","subtitle":"a case study","title":"Performance analysis of radial basis function networks and multi-layer perceptron networks in modeling urban change"}],"person":[{"given":"Hossein","family":"Shafizadeh Moghaddam","role":"aut","roleDisplay":"VerfasserIn","display":"Shafizadeh Moghaddam, Hossein"},{"roleDisplay":"VerfasserIn","display":"Hagenauer, Julian Christian","role":"aut","family":"Hagenauer","given":"Julian Christian"},{"given":"Manuchehr","family":"Farajzadeh","role":"aut","roleDisplay":"VerfasserIn","display":"Farajzadeh, Manuchehr"},{"roleDisplay":"VerfasserIn","display":"Helbich, Marco","role":"aut","family":"Helbich","given":"Marco"}]} 
SRT |a SHAFIZADEHPERFORMANC1120