Hollow carbon sphere/metal oxide nanocomposites anodes for lithium-ion batteries
HCS (Hollow carbon spheres) covered with metal oxide nanoparticles (SnO2 and MnO2, respectively) were successfully synthesized and investigated regarding their potential as anode materials for lithium-ion batteries. Raman spectroscopy shows a high degree of graphitization for the HCS host structure....
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
19 March 2016
|
| In: |
Energy
Year: 2016, Jahrgang: 103, Pages: 100-106 |
| ISSN: | 1873-6785 |
| DOI: | 10.1016/j.energy.2016.02.063 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.energy.2016.02.063 Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0360544216301141 |
| Verfasserangaben: | K. Wenelska, A. Ottmann, P. Schneider, E. Thauer, R. Klingeler, E. Mijowska |
| Zusammenfassung: | HCS (Hollow carbon spheres) covered with metal oxide nanoparticles (SnO2 and MnO2, respectively) were successfully synthesized and investigated regarding their potential as anode materials for lithium-ion batteries. Raman spectroscopy shows a high degree of graphitization for the HCS host structure. The mesoporous nature of the nanocomposites is confirmed by Brunauer-Emmett-Teller analysis. For both metal oxides under study, the metal oxide functionalization of HCS yields a significant increase of electrochemical performance. The charge capacity of HCS/SnO2 is 370 mA hg−1 after 45 cycles (266 mA hg−1 in HCS/MnO2) which clearly exceeds the value of 188 mA hg−1 in pristine HCS. Remarkably, the data imply excellent long term cycling stability after 100 cycles in both cases. The results hence show that mesoporous HCS/metal oxide nanocomposites enable exploiting the potential of metal oxide anode materials in Lithium-ion batteries by providing a HCS host structure which is both conductive and stable enough to accommodate big volume change effects. |
|---|---|
| Beschreibung: | Gesehen am 18.06.2020 |
| Beschreibung: | Online Resource |
| ISSN: | 1873-6785 |
| DOI: | 10.1016/j.energy.2016.02.063 |