Higher Massey products in the cohomology of mild pro-p-groups
Translating results due to J. Labute into group cohomological language, A. Schmidt proved that a finitely presented pro-p-group G is mild and hence of cohomological dimension cdG=2 if H1(G,Fp)=U⊕V as Fp-vector space and the cup-product H1(G,Fp)⊗H1(G,Fp)→H2(G,Fp) maps U⊗V surjectively onto H2(G,Fp) a...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2015
|
| In: |
Journal of algebra
Year: 2014, Jahrgang: 422, Pages: 788-820 |
| ISSN: | 1090-266X |
| DOI: | 10.1016/j.jalgebra.2014.07.023 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jalgebra.2014.07.023 Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0021869314004384 |
| Verfasserangaben: | Jochen Gärtner, Mathematisches Institut, Universität Heidelberg |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1701134217 | ||
| 003 | DE-627 | ||
| 005 | 20220818125555.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200619r20152014xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.jalgebra.2014.07.023 |2 doi | |
| 035 | |a (DE-627)1701134217 | ||
| 035 | |a (DE-599)KXP1701134217 | ||
| 035 | |a (OCoLC)1341340893 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Gärtner, Jochen |e VerfasserIn |0 (DE-588)1018866744 |0 (DE-627)690709943 |0 (DE-576)356538893 |4 aut | |
| 245 | 1 | 0 | |a Higher Massey products in the cohomology of mild pro-p-groups |c Jochen Gärtner, Mathematisches Institut, Universität Heidelberg |
| 264 | 1 | |c 2015 | |
| 300 | |a 33 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Available online 23 September 2014 | ||
| 500 | |a Gesehen am 19.06.2020 | ||
| 520 | |a Translating results due to J. Labute into group cohomological language, A. Schmidt proved that a finitely presented pro-p-group G is mild and hence of cohomological dimension cdG=2 if H1(G,Fp)=U⊕V as Fp-vector space and the cup-product H1(G,Fp)⊗H1(G,Fp)→H2(G,Fp) maps U⊗V surjectively onto H2(G,Fp) and is identically zero on V⊗V. This has led to important results in the study of p-extensions of number fields with restricted ramification, in particular in the case of tame ramification. In this paper, we extend Labute's theory of mild pro-p-groups with respect to weighted Zassenhaus filtrations and prove a generalization of the above result for higher Massey products which allows to construct mild pro-p-groups with defining relations of arbitrary degree. We apply these results to one-relator pro-p-groups and obtain some new evidence of an open question due to Serre. | ||
| 534 | |c 2014 | ||
| 650 | 4 | |a Cohomological dimension | |
| 650 | 4 | |a Massey products | |
| 650 | 4 | |a Mild pro;groups | |
| 650 | 4 | |a One-relator pro;groups | |
| 650 | 4 | |a Restricted Lie algebras | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of algebra |d San Diego, Calif. : Elsevier, 1964 |g 422(2015), Seite 788-820 |h Online-Ressource |w (DE-627)266890423 |w (DE-600)1468947-9 |w (DE-576)10337311X |x 1090-266X |7 nnas |a Higher Massey products in the cohomology of mild pro-p-groups |
| 773 | 1 | 8 | |g volume:422 |g year:2015 |g pages:788-820 |g extent:33 |a Higher Massey products in the cohomology of mild pro-p-groups |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.jalgebra.2014.07.023 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0021869314004384 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200619 | ||
| 993 | |a Article | ||
| 994 | |a 2015 | ||
| 998 | |g 1018866744 |a Gärtner, Jochen |m 1018866744:Gärtner, Jochen |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1701134217 |e 3688860918 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"33 S."}],"relHost":[{"id":{"eki":["266890423"],"zdb":["1468947-9"],"issn":["1090-266X"]},"origin":[{"publisherPlace":"San Diego, Calif. ; New York, NY [u.a.] ; Orlando, Fla. ; San Diego, Calif.","dateIssuedDisp":"1964-","dateIssuedKey":"1964","publisher":"Elsevier ; Acad. Press ; Acad. Press ; Acad. Press"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Journal of algebra","title_sort":"Journal of algebra"}],"part":{"text":"422(2015), Seite 788-820","volume":"422","extent":"33","year":"2015","pages":"788-820"},"pubHistory":["1.1964 - 324.2010; Vol. 325.2011 -"],"recId":"266890423","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 16.07.13"],"disp":"Higher Massey products in the cohomology of mild pro-p-groupsJournal of algebra"}],"name":{"displayForm":["Jochen Gärtner, Mathematisches Institut, Universität Heidelberg"]},"origin":[{"dateIssuedKey":"2015","dateIssuedDisp":"2015"}],"id":{"eki":["1701134217"],"doi":["10.1016/j.jalgebra.2014.07.023"]},"note":["Available online 23 September 2014","Gesehen am 19.06.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1701134217","language":["eng"],"person":[{"family":"Gärtner","given":"Jochen","roleDisplay":"VerfasserIn","display":"Gärtner, Jochen","role":"aut"}],"title":[{"title_sort":"Higher Massey products in the cohomology of mild pro-p-groups","title":"Higher Massey products in the cohomology of mild pro-p-groups"}]} | ||
| SRT | |a GAERTNERJOHIGHERMASS2015 | ||