Towards novel insights in lattice field theory with explainable machine learning

Machine learning has the potential to aid our understanding of phase structures in lattice quantum field theories through the statistical analysis of Monte Carlo samples. Available algorithms, in particular those based on deep learning, often demonstrate remarkable performance in the search for prev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Blücher, Stefan (VerfasserIn) , Kades, Lukas (VerfasserIn) , Pawlowski, Jan M. (VerfasserIn) , Strodthoff, Nils (VerfasserIn) , Urban, Julian M. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 May 2020
In: Physical review
Year: 2020, Jahrgang: 101, Heft: 9
ISSN:2470-0029
DOI:10.1103/PhysRevD.101.094507
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://dx.doi.org/10.1103/PhysRevD.101.094507
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.101.094507
Volltext
Verfasserangaben:Stefan Blücher, Lukas Kades, Jan M. Pawlowski, Nils Strodthoff and Julian M. Urban

MARC

LEADER 00000caa a2200000 c 4500
001 1702156400
003 DE-627
005 20220818132931.0
007 cr uuu---uuuuu
008 200625s2020 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevD.101.094507  |2 doi 
035 |a (DE-627)1702156400 
035 |a (DE-599)KXP1702156400 
035 |a (OCoLC)1341341631 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Blücher, Stefan  |d 1994-  |e VerfasserIn  |0 (DE-588)1178144097  |0 (DE-627)1049230787  |0 (DE-576)517694875  |4 aut 
245 1 0 |a Towards novel insights in lattice field theory with explainable machine learning  |c Stefan Blücher, Lukas Kades, Jan M. Pawlowski, Nils Strodthoff and Julian M. Urban 
264 1 |c 20 May 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 26.06.2020 
520 |a Machine learning has the potential to aid our understanding of phase structures in lattice quantum field theories through the statistical analysis of Monte Carlo samples. Available algorithms, in particular those based on deep learning, often demonstrate remarkable performance in the search for previously unidentified features, but tend to lack transparency if applied naively. To address these shortcomings, we propose representation learning in combination with interpretability methods as a framework for the identification of observables. More specifically, we investigate action parameter regression as a pretext task while using layer-wise relevance propagation (LRP) to identify the most important observables depending on the location in the phase diagram. The approach is put to work in the context of a scalar Yukawa model in (2+1)d. First, we investigate a multilayer perceptron to determine an importance hierarchy of several predefined, standard observables. The method is then applied directly to the raw field configurations using a convolutional network, demonstrating the ability to reconstruct all order parameters from the learned filter weights. Based on our results, we argue that due to its broad applicability, attribution methods such as LRP could prove a useful and versatile tool in our search for new physical insights. In the case of the Yukawa model, it facilitates the construction of an observable that characterizes the symmetric phase. 
700 1 |a Kades, Lukas  |d 1991-  |e VerfasserIn  |0 (DE-588)117814528X  |0 (DE-627)1049231686  |0 (DE-576)517696266  |4 aut 
700 1 |a Pawlowski, Jan M.  |d 1965-  |e VerfasserIn  |0 (DE-588)1047077388  |0 (DE-627)777525925  |0 (DE-576)400331381  |4 aut 
700 1 |a Strodthoff, Nils  |d 1985-  |e VerfasserIn  |0 (DE-588)1032638079  |0 (DE-627)738604011  |0 (DE-576)380153076  |4 aut 
700 1 |a Urban, Julian M.  |d 1994-  |e VerfasserIn  |0 (DE-588)1173444157  |0 (DE-627)1043277242  |0 (DE-576)515261769  |4 aut 
773 0 8 |i Enthalten in  |t Physical review  |d Ridge, NY : American Physical Society, 2016  |g 101(2020,9) Artikel-Nummer 094507, 12 Seiten  |h Online-Ressource  |w (DE-627)846313510  |w (DE-600)2844732-3  |w (DE-576)454495811  |x 2470-0029  |7 nnas  |a Towards novel insights in lattice field theory with explainable machine learning 
773 1 8 |g volume:101  |g year:2020  |g number:9  |a Towards novel insights in lattice field theory with explainable machine learning 
856 4 0 |u https://dx.doi.org/10.1103/PhysRevD.101.094507  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://link.aps.org/doi/10.1103/PhysRevD.101.094507  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200625 
993 |a Article 
994 |a 2020 
998 |g 1173444157  |a Urban, Julian M.  |m 1173444157:Urban, Julian M.  |d 130000  |d 700000  |d 728500  |e 130000PU1173444157  |e 700000PU1173444157  |e 728500PU1173444157  |k 0/130000/  |k 0/700000/  |k 1/700000/728500/  |p 5  |y j 
998 |g 1032638079  |a Strodthoff, Nils  |m 1032638079:Strodthoff, Nils  |p 4 
998 |g 1047077388  |a Pawlowski, Jan M.  |m 1047077388:Pawlowski, Jan M.  |d 130000  |d 130300  |d 700000  |d 728500  |e 130000PP1047077388  |e 130300PP1047077388  |e 700000PP1047077388  |e 728500PP1047077388  |k 0/130000/  |k 1/130000/130300/  |k 0/700000/  |k 1/700000/728500/  |p 3 
998 |g 117814528X  |a Kades, Lukas  |m 117814528X:Kades, Lukas  |d 130000  |d 130300  |d 700000  |d 728500  |e 130000PK117814528X  |e 130300PK117814528X  |e 700000PK117814528X  |e 728500PK117814528X  |k 0/130000/  |k 1/130000/130300/  |k 0/700000/  |k 1/700000/728500/  |p 2 
998 |g 1178144097  |a Blücher, Stefan  |m 1178144097:Blücher, Stefan  |p 1  |x j 
999 |a KXP-PPN1702156400  |e 3691042589 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1702156400","language":["eng"],"name":{"displayForm":["Stefan Blücher, Lukas Kades, Jan M. Pawlowski, Nils Strodthoff and Julian M. Urban"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1702156400"],"doi":["10.1103/PhysRevD.101.094507"]},"origin":[{"dateIssuedDisp":"20 May 2020","dateIssuedKey":"2020"}],"note":["Gesehen am 26.06.2020"],"relHost":[{"title":[{"title":"Physical review","title_sort":"Physical review"}],"part":{"text":"101(2020,9) Artikel-Nummer 094507, 12 Seiten","issue":"9","year":"2020","volume":"101"},"corporate":[{"display":"American Physical Society","role":"isb"}],"disp":"Towards novel insights in lattice field theory with explainable machine learningPhysical review","type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"titleAlt":[{"title":"Particles, fields, gravitation, and cosmology"}],"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 14.03.2023"],"origin":[{"dateIssuedDisp":"2016-","publisher":"American Physical Society","dateIssuedKey":"2016","publisherPlace":"Ridge, NY"}],"pubHistory":["3rd series, volume 93, number 1 (January 2016)-"],"id":{"zdb":["2844732-3"],"eki":["846313510"],"issn":["2470-0029"]},"recId":"846313510","name":{"displayForm":["published by American Physical Society"]}}],"title":[{"title_sort":"Towards novel insights in lattice field theory with explainable machine learning","title":"Towards novel insights in lattice field theory with explainable machine learning"}],"person":[{"family":"Blücher","given":"Stefan","display":"Blücher, Stefan","role":"aut"},{"given":"Lukas","family":"Kades","display":"Kades, Lukas","role":"aut"},{"display":"Pawlowski, Jan M.","role":"aut","family":"Pawlowski","given":"Jan M."},{"given":"Nils","family":"Strodthoff","display":"Strodthoff, Nils","role":"aut"},{"given":"Julian M.","family":"Urban","display":"Urban, Julian M.","role":"aut"}]} 
SRT |a BLUECHERSTTOWARDSNOV2020