DALSA: domain adaptation for supervised learning from sparsely annotated MR images

We propose a new method that employs transfer learning techniques to effectively correct sampling selection errors introduced by sparse annotations during supervised learning for automated tumor segmentation. The practicality of current learning-based automated tissue classification approaches is se...

Full description

Saved in:
Bibliographic Details
Main Authors: Götz, Michael (Author) , Weber, Christian (Author) , Binczyk, Franciszek (Author) , Polanska, Joanna (Author) , Tarnawski, Rafal (Author) , Bobek-Billewicz, Barbara (Author) , Köthe, Ullrich (Author) , Kleesiek, Jens Philipp (Author) , Stieltjes, Bram (Author) , Maier-Hein, Klaus H. (Author)
Format: Article (Journal)
Language:English
Published: Jan. 2016
In: IEEE transactions on medical imaging
Year: 2016, Volume: 35, Issue: 1, Pages: 184-196
ISSN:1558-254X
DOI:10.1109/TMI.2015.2463078
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1109/TMI.2015.2463078
Get full text
Author Notes:Michael Goetz, Christian Weber, Franciszek Binczyk, Joanna Polanska, Rafal Tarnawski, Barbara Bobek-Billewicz, Ullrich Koethe, Jens Kleesiek, Bram Stieltjes, and Klaus H. Maier-Hein

MARC

LEADER 00000caa a2200000 c 4500
001 1702179869
003 DE-627
005 20230427045019.0
007 cr uuu---uuuuu
008 200625s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TMI.2015.2463078  |2 doi 
035 |a (DE-627)1702179869 
035 |a (DE-599)KXP1702179869 
035 |a (OCoLC)1341341868 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Götz, Michael  |e VerfasserIn  |0 (DE-588)119554541X  |0 (DE-627)1677564326  |4 aut 
245 1 0 |a DALSA  |b domain adaptation for supervised learning from sparsely annotated MR images  |c Michael Goetz, Christian Weber, Franciszek Binczyk, Joanna Polanska, Rafal Tarnawski, Barbara Bobek-Billewicz, Ullrich Koethe, Jens Kleesiek, Bram Stieltjes, and Klaus H. Maier-Hein 
264 1 |c Jan. 2016 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 25.06.2020 
520 |a We propose a new method that employs transfer learning techniques to effectively correct sampling selection errors introduced by sparse annotations during supervised learning for automated tumor segmentation. The practicality of current learning-based automated tissue classification approaches is severely impeded by their dependency on manually segmented training databases that need to be recreated for each scenario of application, site, or acquisition setup. The comprehensive annotation of reference datasets can be highly labor-intensive, complex, and error-prone. The proposed method derives high-quality classifiers for the different tissue classes from sparse and unambiguous annotations and employs domain adaptation techniques for effectively correcting sampling selection errors introduced by the sparse sampling. The new approach is validated on labeled, multi-modal MR images of 19 patients with malignant gliomas and by comparative analysis on the BraTS 2013 challenge data sets. Compared to training on fully labeled data, we reduced the time for labeling and training by a factor greater than 70 and 180 respectively without sacrificing accuracy. This dramatically eases the establishment and constant extension of large annotated databases in various scenarios and imaging setups and thus represents an important step towards practical applicability of learning-based approaches in tissue classification. 
650 4 |a Algorithms 
650 4 |a automated tissue classification 
650 4 |a automated tumor segmentation 
650 4 |a Automatic multi-modal segmentation 
650 4 |a biomedical MRI 
650 4 |a Brain Neoplasms 
650 4 |a brain tumor segmentation 
650 4 |a compressed sensing 
650 4 |a DALSA 
650 4 |a Decision Trees 
650 4 |a domain adaptation 
650 4 |a domain adaptation techniques 
650 4 |a domain-adaptation-for-supervised-learning-from-sparsely-annotation 
650 4 |a glioma 
650 4 |a Glioma 
650 4 |a Humans 
650 4 |a image classification 
650 4 |a Image Processing, Computer-Assisted 
650 4 |a image segmentation 
650 4 |a Image segmentation 
650 4 |a Labeling 
650 4 |a learning-based approach 
650 4 |a Machine Learning 
650 4 |a Magnetic Resonance Imaging 
650 4 |a malignant gliomas 
650 4 |a medical image processing 
650 4 |a MR Images 
650 4 |a Noise 
650 4 |a random forest 
650 4 |a sampling selection errors 
650 4 |a sparse annotations 
650 4 |a sparse sampling 
650 4 |a tissue classes 
650 4 |a Training 
650 4 |a Training data 
650 4 |a transfer learning 
650 4 |a transfer learning techniques 
650 4 |a Tumors 
650 4 |a tumours 
650 4 |a Vegetation 
700 1 |a Weber, Christian  |e VerfasserIn  |4 aut 
700 1 |a Binczyk, Franciszek  |e VerfasserIn  |4 aut 
700 1 |a Polanska, Joanna  |e VerfasserIn  |4 aut 
700 1 |a Tarnawski, Rafal  |e VerfasserIn  |4 aut 
700 1 |a Bobek-Billewicz, Barbara  |e VerfasserIn  |4 aut 
700 1 |a Köthe, Ullrich  |e VerfasserIn  |0 (DE-588)123963435  |0 (DE-627)594480884  |0 (DE-576)304484520  |4 aut 
700 1 |a Kleesiek, Jens Philipp  |d 1977-  |e VerfasserIn  |0 (DE-588)132998076  |0 (DE-627)530080745  |0 (DE-576)299554465  |4 aut 
700 1 |a Stieltjes, Bram  |e VerfasserIn  |4 aut 
700 1 |a Maier-Hein, Klaus H.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on medical imaging  |d New York, NY : Institute of Electrical and Electronics Engineers,, 1982  |g 35(2016), 1, Seite 184-196  |h Online-Ressource  |w (DE-627)341354759  |w (DE-600)2068206-2  |w (DE-576)105283061  |x 1558-254X  |7 nnas 
773 1 8 |g volume:35  |g year:2016  |g number:1  |g pages:184-196  |g extent:13  |a DALSA domain adaptation for supervised learning from sparsely annotated MR images 
856 4 0 |u https://doi.org/10.1109/TMI.2015.2463078  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200625 
993 |a Article 
994 |a 2016 
998 |g 132998076  |a Kleesiek, Jens Philipp  |m 132998076:Kleesiek, Jens Philipp  |d 50000  |e 50000PK132998076  |k 0/50000/  |p 8 
998 |g 123963435  |a Köthe, Ullrich  |m 123963435:Köthe, Ullrich  |d 700000  |d 708070  |e 700000PK123963435  |e 708070PK123963435  |k 0/700000/  |k 1/700000/708070/  |p 7 
999 |a KXP-PPN1702179869  |e 3691143784 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 25.06.2020"],"origin":[{"dateIssuedDisp":"Jan. 2016","dateIssuedKey":"2016"}],"title":[{"title_sort":"DALSA","title":"DALSA","subtitle":"domain adaptation for supervised learning from sparsely annotated MR images"}],"person":[{"role":"aut","display":"Götz, Michael","given":"Michael","family":"Götz"},{"family":"Weber","given":"Christian","role":"aut","display":"Weber, Christian"},{"display":"Binczyk, Franciszek","role":"aut","given":"Franciszek","family":"Binczyk"},{"given":"Joanna","family":"Polanska","display":"Polanska, Joanna","role":"aut"},{"display":"Tarnawski, Rafal","role":"aut","family":"Tarnawski","given":"Rafal"},{"given":"Barbara","family":"Bobek-Billewicz","display":"Bobek-Billewicz, Barbara","role":"aut"},{"given":"Ullrich","family":"Köthe","role":"aut","display":"Köthe, Ullrich"},{"family":"Kleesiek","given":"Jens Philipp","display":"Kleesiek, Jens Philipp","role":"aut"},{"family":"Stieltjes","given":"Bram","role":"aut","display":"Stieltjes, Bram"},{"family":"Maier-Hein","given":"Klaus H.","display":"Maier-Hein, Klaus H.","role":"aut"}],"relHost":[{"corporate":[{"role":"aut","display":"Institute of Electrical and Electronics Engineers"}],"part":{"pages":"184-196","text":"35(2016), 1, Seite 184-196","issue":"1","volume":"35","year":"2016","extent":"13"},"title":[{"subtitle":"a publication of the IEEE Engineering in Medicine and Biology Society ...","title_sort":"IEEE transactions on medical imaging","title":"IEEE transactions on medical imaging"}],"disp":"Institute of Electrical and Electronics EngineersIEEE transactions on medical imaging","titleAlt":[{"title":"Transactions on medical imaging"}],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1982","publisherPlace":"New York, NY ; New York, NY","publisher":"Institute of Electrical and Electronics Engineers, ; IEEE","dateIssuedDisp":"1982-"}],"note":["Gesehen am 13.01.11"],"id":{"eki":["341354759"],"issn":["1558-254X"],"zdb":["2068206-2"]},"pubHistory":["1.1982(July) -"],"recId":"341354759"}],"physDesc":[{"extent":"13 S."}],"name":{"displayForm":["Michael Goetz, Christian Weber, Franciszek Binczyk, Joanna Polanska, Rafal Tarnawski, Barbara Bobek-Billewicz, Ullrich Koethe, Jens Kleesiek, Bram Stieltjes, and Klaus H. Maier-Hein"]},"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1702179869","id":{"eki":["1702179869"],"doi":["10.1109/TMI.2015.2463078"]}} 
SRT |a GOETZMICHADALSA2016