A multivariate conditional model for streamflow prediction and spatial precipitation refinement

The effective prediction and estimation of hydrometeorological variables are important for water resources planning and management. In this study, we propose a multivariate conditional model for streamflow prediction and the refinement of spatial precipitation estimates. This model consists of high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liu, Zhiyong (VerfasserIn) , Zhou, Ping (VerfasserIn) , Chen, Xiuzhi (VerfasserIn) , Guan, Yinghui (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 OCT 2015
In: Journal of geophysical research. Atmospheres
Year: 2015, Jahrgang: 120, Heft: 19, Pages: 10,116-10,129
ISSN:2169-8996
DOI:10.1002/2015JD023787
Online-Zugang:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1002/2015JD023787
Verlag, lizenzpflichtig, Volltext: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JD023787
Volltext
Verfasserangaben:Zhiyong Liu, Ping Zhou, Xiuzhi Chen, and Yinghui Guan
Beschreibung
Zusammenfassung:The effective prediction and estimation of hydrometeorological variables are important for water resources planning and management. In this study, we propose a multivariate conditional model for streamflow prediction and the refinement of spatial precipitation estimates. This model consists of high dimensional vine copulas, conditional bivariate copula simulations, and a quantile-copula function.
Beschreibung:Gesehen am 29.06.2020
Beschreibung:Online Resource
ISSN:2169-8996
DOI:10.1002/2015JD023787