Chiral mirror-baryon-meson model and nuclear matter beyond mean-field approximation

We consider a chiral baryon-meson model for nucleons and their parity partners in mirror assignment interacting with pions and sigma and omega mesons to describe the liquid-gas transition of nuclear matter together with chiral symmetry restoration in the high density phase. Within the mean-field app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Weyrich, Johannes (VerfasserIn) , Strodthoff, Nils (VerfasserIn) , Smekal, Lorenz von (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29 July 2015
In: Physical review. C, Nuclear physics
Year: 2015, Jahrgang: 92, Heft: 1
ISSN:1089-490X
DOI:10.1103/PhysRevC.92.015214
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevC.92.015214
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevC.92.015214
Volltext
Verfasserangaben:Johannes Weyrich, Nils Strodthoff and Lorenz von Smekal
Beschreibung
Zusammenfassung:We consider a chiral baryon-meson model for nucleons and their parity partners in mirror assignment interacting with pions and sigma and omega mesons to describe the liquid-gas transition of nuclear matter together with chiral symmetry restoration in the high density phase. Within the mean-field approximation the model is known to provide a phenomenologically successful description of the nuclear-matter transition. Here, we go beyond this approximation and include mesonic fluctuations by means of the functional renormalization group. While these fluctuations do not lead to major qualitative changes in the phase diagram of the model, beyond the mean-field approximation, one is no longer free to adjust the parameters so as to reproduce the binding energy per nucleon, the nuclear saturation density, and the nucleon sigma term all at the same time. However, the prediction of a clear first-order chiral transition at low temperatures inside the high baryon-density phase appears to be robust.
Beschreibung:Gesehen am 01.07.2020
Beschreibung:Online Resource
ISSN:1089-490X
DOI:10.1103/PhysRevC.92.015214