Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting

This study investigated the performance and potential of a hybrid model that combined the discrete wavelet transform and support vector regression (the DWT-SVR model) for daily and monthly streamflow forecasting. Three key factors of the wavelet decomposition phase (mother wavelet, decomposition lev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Liu, Zhiyong (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 6 July 2014
In: Journal of hydrology
Year: 2014, Jahrgang: 519, Pages: 2822-2831
ISSN:1879-2707
DOI:10.1016/j.jhydrol.2014.06.050
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jhydrol.2014.06.050
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0022169414005101
Volltext
Verfasserangaben:Zhiyong Liu, Ping Zhou, Gang Chen, Ledong Guo

MARC

LEADER 00000caa a2200000 c 4500
001 1703813685
003 DE-627
005 20220818142720.0
007 cr uuu---uuuuu
008 200707s2014 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jhydrol.2014.06.050  |2 doi 
035 |a (DE-627)1703813685 
035 |a (DE-599)KXP1703813685 
035 |a (OCoLC)1341344381 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Liu, Zhiyong  |e VerfasserIn  |0 (DE-588)1100315454  |0 (DE-627)859270076  |0 (DE-576)469594659  |4 aut 
245 1 0 |a Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting  |c Zhiyong Liu, Ping Zhou, Gang Chen, Ledong Guo 
264 1 |c 6 July 2014 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.07.2020 
520 |a This study investigated the performance and potential of a hybrid model that combined the discrete wavelet transform and support vector regression (the DWT-SVR model) for daily and monthly streamflow forecasting. Three key factors of the wavelet decomposition phase (mother wavelet, decomposition level, and edge effect) were proposed to consider for improving the accuracy of the DWT-SVR model. The performance of DWT-SVR models with different combinations of these three factors was compared with the regular SVR model. The effectiveness of these models was evaluated using the root-mean-squared error (RMSE) and Nash-Sutcliffe model efficiency coefficient (NSE). Daily and monthly streamflow data observed at two stations in Indiana, United States, were used to test the forecasting skill of these models. The results demonstrated that the different hybrid models did not always outperform the SVR model for 1-day and 1-month lead time streamflow forecasting. This suggests that it is crucial to consider and compare the three key factors when using the DWT-SVR model (or other machine learning methods coupled with the wavelet transform), rather than choosing them based on personal preferences. We then combined forecasts from multiple candidate DWT-SVR models using a model averaging technique based upon Akaike’s information criterion (AIC). This ensemble prediction was superior to the single best DWT-SVR model and regular SVR model for both 1-day and 1-month ahead predictions. With respect to longer lead times (i.e., 2- and 3-day and 2-month), the ensemble predictions using the AIC averaging technique were consistently better than the best DWT-SVR model and SVR model. Therefore, integrating model averaging techniques with the hybrid DWT-SVR model would be a promising approach for daily and monthly streamflow forecasting. Additionally, we strongly recommend considering these three key factors when using wavelet-based SVR models (or other wavelet-based forecasting models). 
650 4 |a Indiana 
650 4 |a Model averaging 
650 4 |a Streamflow forecasting 
650 4 |a Support vector regression 
650 4 |a Wavelet analysis 
773 0 8 |i Enthalten in  |t Journal of hydrology  |d Amsterdam [u.a.] : Elsevier, 1963  |g 519(2014), Seite 2822-2831  |h Online-Ressource  |w (DE-627)268761817  |w (DE-600)1473173-3  |w (DE-576)077610628  |x 1879-2707  |7 nnas  |a Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting 
773 1 8 |g volume:519  |g year:2014  |g pages:2822-2831  |g extent:10  |a Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting 
856 4 0 |u https://doi.org/10.1016/j.jhydrol.2014.06.050  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0022169414005101  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200707 
993 |a Article 
994 |a 2014 
998 |g 1100315454  |a Liu, Zhiyong  |m 1100315454:Liu, Zhiyong  |d 120000  |d 120700  |e 120000PL1100315454  |e 120700PL1100315454  |k 0/120000/  |k 1/120000/120700/  |p 1  |x j 
999 |a KXP-PPN1703813685  |e 3696032565 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Zhiyong Liu, Ping Zhou, Gang Chen, Ledong Guo"]},"id":{"eki":["1703813685"],"doi":["10.1016/j.jhydrol.2014.06.050"]},"origin":[{"dateIssuedKey":"2014","dateIssuedDisp":"6 July 2014"}],"relHost":[{"pubHistory":["1.1963 - 411.2011; Vol. 412/413.2012 -"],"part":{"extent":"10","text":"519(2014), Seite 2822-2831","volume":"519","pages":"2822-2831","year":"2014"},"titleAlt":[{"title":"Hydro online"}],"disp":"Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecastingJournal of hydrology","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 30.05.08"],"recId":"268761817","language":["eng"],"title":[{"title_sort":"Journal of hydrology","title":"Journal of hydrology"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Amsterdam [u.a.] ; Amsterdam","dateIssuedKey":"1963","publisher":"Elsevier ; North-Holland Publ. Co.","dateIssuedDisp":"1963-"}],"id":{"eki":["268761817"],"zdb":["1473173-3"],"issn":["1879-2707"]}}],"physDesc":[{"extent":"10 S."}],"person":[{"display":"Liu, Zhiyong","roleDisplay":"VerfasserIn","role":"aut","family":"Liu","given":"Zhiyong"}],"title":[{"title_sort":"Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting","title":"Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting"}],"language":["eng"],"recId":"1703813685","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 07.07.2020"]} 
SRT |a LIUZHIYONGEVALUATING6201