A framework to build similarity-based cohorts for personalized treatment advice: a standardized, but flexible workflow with the R package SimBaCo

Along with increasing amounts of big data sources and increasing computer performance, real-world evidence from such sources likewise gains in importance. While this mostly applies to population averaged results from analyses based on the all available data, it is also possible to conduct so-called...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wirbka, Lucas (VerfasserIn) , Haefeli, Walter E. (VerfasserIn) , Meid, Andreas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: May 29, 2020
In: PLOS ONE
Year: 2020, Jahrgang: 15, Heft: 5
ISSN:1932-6203
DOI:10.1371/journal.pone.0233686
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1371/journal.pone.0233686
Verlag, lizenzpflichtig, Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233686
Volltext
Verfasserangaben:Lucas Wirbka, Walter E. Haefeli, Andreas D. Meid

MARC

LEADER 00000caa a2200000 c 4500
001 1703853296
003 DE-627
005 20220818143246.0
007 cr uuu---uuuuu
008 200707s2020 xx |||||o 00| ||eng c
024 7 |a 10.1371/journal.pone.0233686  |2 doi 
035 |a (DE-627)1703853296 
035 |a (DE-599)KXP1703853296 
035 |a (OCoLC)1341344703 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Wirbka, Lucas  |d 1995-  |e VerfasserIn  |0 (DE-588)1213310687  |0 (DE-627)1703847997  |4 aut 
245 1 2 |a A framework to build similarity-based cohorts for personalized treatment advice  |b a standardized, but flexible workflow with the R package SimBaCo  |c Lucas Wirbka, Walter E. Haefeli, Andreas D. Meid 
264 1 |c May 29, 2020 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 06.07.2020 
520 |a Along with increasing amounts of big data sources and increasing computer performance, real-world evidence from such sources likewise gains in importance. While this mostly applies to population averaged results from analyses based on the all available data, it is also possible to conduct so-called personalized analyses based on a data subset whose observations resemble a particular patient for whom a decision is to be made. Claims data from statutory health insurance companies could provide necessary information for such personalized analyses. To derive treatment recommendations from them for a particular patient in everyday care, an automated, reproducible and efficiently programmed workflow would be required. We introduce the R-package SimBaCo (Similarity-Based Cohort generation) offering a simple, but modular, and intuitive framework for this task. With the six built-in R-functions, this framework allows the user to create similarity cohorts tailored to the characteristics of particular patients. An exemplary workflow illustrates the distinct steps beginning with an initial cohort selection according to inclusion and exclusion criteria. A plotting function facilitates investigating a particular patient’s characteristics relative to their distribution in a reference cohort, for example the initial cohort or the precision cohort after the data has been trimmed in accordance with chosen variables for similarity finding. Such precision cohorts allow any form of personalized analysis, for example personalized analyses of comparative effectiveness or customized prediction models developed from precision cohorts. In our exemplary workflow, we provide such a treatment comparison whereupon a treatment decision for a particular patient could be made. This is only one field of application where personalized results can directly support the process of clinical reasoning by leveraging information from individual patient data. With this modular package at hand, personalized studies can efficiently weight benefits and risks of treatment options of particular patients. 
650 4 |a Atrial fibrillation 
650 4 |a Charts 
650 4 |a Comparative effectiveness research 
650 4 |a Data processing 
650 4 |a Decision making 
650 4 |a Distance measurement 
650 4 |a Forecasting 
650 4 |a Reasoning 
700 1 |a Haefeli, Walter E.  |d 1958-  |e VerfasserIn  |0 (DE-588)124572359  |0 (DE-627)656806141  |0 (DE-576)340514221  |4 aut 
700 1 |a Meid, Andreas  |d 1981-  |e VerfasserIn  |0 (DE-588)1076301991  |0 (DE-627)834660377  |0 (DE-576)445184582  |4 aut 
773 0 8 |i Enthalten in  |t PLOS ONE  |d San Francisco, California, US : PLOS, 2006  |g 15(2020,5) Artikel-Nummer e0233686, 12 Seite  |h Online-Ressource  |w (DE-627)523574592  |w (DE-600)2267670-3  |w (DE-576)281331979  |x 1932-6203  |7 nnas  |a A framework to build similarity-based cohorts for personalized treatment advice a standardized, but flexible workflow with the R package SimBaCo 
773 1 8 |g volume:15  |g year:2020  |g number:5  |g extent:12  |a A framework to build similarity-based cohorts for personalized treatment advice a standardized, but flexible workflow with the R package SimBaCo 
856 4 0 |u https://doi.org/10.1371/journal.pone.0233686  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233686  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200707 
993 |a Article 
994 |a 2020 
998 |g 1076301991  |a Meid, Andreas  |m 1076301991:Meid, Andreas  |d 910000  |d 910100  |e 910000PM1076301991  |e 910100PM1076301991  |k 0/910000/  |k 1/910000/910100/  |p 3  |y j 
998 |g 124572359  |a Haefeli, Walter E.  |m 124572359:Haefeli, Walter E.  |d 910000  |d 910100  |e 910000PH124572359  |e 910100PH124572359  |k 0/910000/  |k 1/910000/910100/  |p 2 
998 |g 1213310687  |a Wirbka, Lucas  |m 1213310687:Wirbka, Lucas  |d 910000  |d 910100  |e 910000PW1213310687  |e 910100PW1213310687  |k 0/910000/  |k 1/910000/910100/  |p 1  |x j 
999 |a KXP-PPN1703853296  |e 3696160229 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"subtitle":"a standardized, but flexible workflow with the R package SimBaCo","title":"A framework to build similarity-based cohorts for personalized treatment advice","title_sort":"framework to build similarity-based cohorts for personalized treatment advice"}],"person":[{"roleDisplay":"VerfasserIn","role":"aut","given":"Lucas","display":"Wirbka, Lucas","family":"Wirbka"},{"display":"Haefeli, Walter E.","role":"aut","roleDisplay":"VerfasserIn","given":"Walter E.","family":"Haefeli"},{"display":"Meid, Andreas","given":"Andreas","role":"aut","roleDisplay":"VerfasserIn","family":"Meid"}],"language":["eng"],"origin":[{"dateIssuedDisp":"May 29, 2020","dateIssuedKey":"2020"}],"name":{"displayForm":["Lucas Wirbka, Walter E. Haefeli, Andreas D. Meid"]},"id":{"doi":["10.1371/journal.pone.0233686"],"eki":["1703853296"]},"physDesc":[{"extent":"12 S."}],"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["1.2006 -"],"note":["Schreibweise des Titels bis 2012: PLoS ONE","Gesehen am 20.03.19"],"part":{"volume":"15","issue":"5","text":"15(2020,5) Artikel-Nummer e0233686, 12 Seite","year":"2020","extent":"12"},"recId":"523574592","corporate":[{"roleDisplay":"Herausgebendes Organ","role":"isb","display":"Public Library of Science"}],"id":{"zdb":["2267670-3"],"eki":["523574592"],"issn":["1932-6203"]},"disp":"A framework to build similarity-based cohorts for personalized treatment advice a standardized, but flexible workflow with the R package SimBaCoPLOS ONE","language":["eng"],"origin":[{"dateIssuedKey":"2006","publisherPlace":"San Francisco, California, US ; Lawrence, Kan.","publisher":"PLOS ; PLoS","dateIssuedDisp":"2006-"}],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["Public Library of Science"]},"title":[{"title":"PLOS ONE","title_sort":"PLOS ONE"}]}],"note":["Gesehen am 06.07.2020"],"recId":"1703853296","type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a WIRBKALUCAFRAMEWORKT2920