Generative regularization with latent topics for discriminative object recognition

Popular part-based approaches to recognition are currently limited to few localized parts, which only poorly represent the fine-scale details and large variability of object categories. Extending to hundreds of specific part detectors helps to capture peculiar characteristics but due to their specif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rubio, Jose C. (VerfasserIn) , Eigenstetter, Angela (VerfasserIn) , Ommer, Björn (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: [2015]
In: Pattern recognition
Year: 2015, Jahrgang: 48, Heft: 12, Pages: 3871-3880
DOI:10.1016/j.patcog.2015.06.013
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.patcog.2015.06.013
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0031320315002356
Volltext
Verfasserangaben:Jose C. Rubio, Angela Eigenstetter, Björn Ommer

MARC

LEADER 00000caa a2200000 c 4500
001 1713927713
003 DE-627
005 20220818143731.0
007 cr uuu---uuuuu
008 200708s2015 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.patcog.2015.06.013  |2 doi 
035 |a (DE-627)1713927713 
035 |a (DE-599)KXP1713927713 
035 |a (OCoLC)1341344808 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Rubio, Jose C.  |e VerfasserIn  |0 (DE-588)1052420338  |0 (DE-627)788467247  |0 (DE-576)408129239  |4 aut 
245 1 0 |a Generative regularization with latent topics for discriminative object recognition  |c Jose C. Rubio, Angela Eigenstetter, Björn Ommer 
264 1 |c [2015] 
300 |b Illustrationen 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online 2 July 2015 
500 |a Gesehen am 08.07.2020 
520 |a Popular part-based approaches to recognition are currently limited to few localized parts, which only poorly represent the fine-scale details and large variability of object categories. Extending to hundreds of specific part detectors helps to capture peculiar characteristics but due to their specificity, for each object instance different parts will be helpful and others will yield noisy responses that actually impair classification. While training the part-based model, we thus need to learn which parts are relevant for which training instances. To automatically discover these latent topics of parts and instances we employ generative non-negative matrix factorization and seek topics with low reconstruction error. To assure recognition performance this generative approach is embedded within a discriminative latent max-margin procedure that separates classes while optimizing the latent topics. Consequently, generative reconstruction is regularizing discriminative classification, while the latter ensures that topics actually help in recognition. Experiments on PASCAL VOC demonstrate the recognition performance of our model as well as the construction of meaningful topics. 
650 4 |a Latent SVM 
650 4 |a Mixture models 
650 4 |a Non-Negative Matrix Factorization 
650 4 |a Part-based models 
650 4 |a Visual object recognition 
700 1 |a Eigenstetter, Angela  |e VerfasserIn  |0 (DE-588)1074025326  |0 (DE-627)830173145  |0 (DE-576)43553503X  |4 aut 
700 1 |a Ommer, Björn  |d 1981-  |e VerfasserIn  |0 (DE-588)1034893106  |0 (DE-627)746457510  |0 (DE-576)382507916  |4 aut 
773 0 8 |i Enthalten in  |t Pattern recognition  |d Amsterdam : Elsevier, 1968  |g 48(2015), 12, Seite 3871-3880  |h Online-Ressource  |w (DE-627)265784131  |w (DE-600)1466343-0  |w (DE-576)101177364  |7 nnas  |a Generative regularization with latent topics for discriminative object recognition 
773 1 8 |g volume:48  |g year:2015  |g number:12  |g pages:3871-3880  |g extent:10  |a Generative regularization with latent topics for discriminative object recognition 
856 4 0 |u https://doi.org/10.1016/j.patcog.2015.06.013  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0031320315002356  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200708 
993 |a Article 
994 |a 2015 
998 |g 1034893106  |a Ommer, Björn  |m 1034893106:Ommer, Björn  |d 700000  |d 708070  |e 700000PO1034893106  |e 708070PO1034893106  |k 0/700000/  |k 1/700000/708070/  |p 3  |y j 
998 |g 1074025326  |a Eigenstetter, Angela  |m 1074025326:Eigenstetter, Angela  |p 2 
998 |g 1052420338  |a Rubio, Jose C.  |m 1052420338:Rubio, Jose C.  |p 1  |x j 
999 |a KXP-PPN1713927713  |e 3711417248 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"Generative regularization with latent topics for discriminative object recognition","title_sort":"Generative regularization with latent topics for discriminative object recognition"}],"person":[{"display":"Rubio, Jose C.","roleDisplay":"VerfasserIn","role":"aut","family":"Rubio","given":"Jose C."},{"given":"Angela","family":"Eigenstetter","role":"aut","roleDisplay":"VerfasserIn","display":"Eigenstetter, Angela"},{"given":"Björn","family":"Ommer","role":"aut","roleDisplay":"VerfasserIn","display":"Ommer, Björn"}],"recId":"1713927713","language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Available online 2 July 2015","Gesehen am 08.07.2020"],"id":{"doi":["10.1016/j.patcog.2015.06.013"],"eki":["1713927713"]},"origin":[{"dateIssuedDisp":"[2015]","dateIssuedKey":"2015"}],"name":{"displayForm":["Jose C. Rubio, Angela Eigenstetter, Björn Ommer"]},"relHost":[{"origin":[{"dateIssuedDisp":"1968-","dateIssuedKey":"1968","publisher":"Elsevier","publisherPlace":"Amsterdam"}],"id":{"eki":["265784131"],"zdb":["1466343-0"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Pattern recognition","subtitle":"the journal of the Pattern Recognition Society","title":"Pattern recognition"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 31.05.23"],"disp":"Generative regularization with latent topics for discriminative object recognitionPattern recognition","recId":"265784131","corporate":[{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"Pattern Recognition Society"}],"language":["eng"],"pubHistory":["1.1968/69 - 48.2015; Vol. 49.2016 -"],"part":{"pages":"3871-3880","issue":"12","year":"2015","extent":"10","volume":"48","text":"48(2015), 12, Seite 3871-3880"}}],"physDesc":[{"noteIll":"Illustrationen","extent":"10 S."}]} 
SRT |a RUBIOJOSECGENERATIVE2015