Beyond the sum of parts: voting with groups of dependent entities

The high complexity of multi-scale, category-level object detection in cluttered scenes is efficiently handled by Hough voting methods. However, the main shortcoming of the approach is that mutually dependent local observations are independently casting their votes for intrinsically global object pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yarlagadda, Pradeep Krishna (VerfasserIn) , Ommer, Björn (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2015
In: IEEE transactions on pattern analysis and machine intelligence
Year: 2014, Jahrgang: 37, Heft: 6, Pages: 1134-1147
ISSN:1939-3539
DOI:10.1109/TPAMI.2014.2363456
Online-Zugang:Verlag: http://dx.doi.org/10.1109/TPAMI.2014.2363456
Volltext
Verfasserangaben:Pradeep Yarlagadda, Björn Ommer

MARC

LEADER 00000caa a2200000 c 4500
001 1724376497
003 DE-627
005 20220818145304.0
007 cr uuu---uuuuu
008 200710r20152014xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2363456  |2 doi 
035 |a (DE-627)1724376497 
035 |a (DE-599)KXP1724376497 
035 |a (OCoLC)1341345047 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Yarlagadda, Pradeep Krishna  |e VerfasserIn  |0 (DE-588)1035423472  |0 (DE-627)747809941  |0 (DE-576)383007348  |4 aut 
245 1 0 |a Beyond the sum of parts  |b voting with groups of dependent entities  |c Pradeep Yarlagadda, Björn Ommer 
264 1 |c 2015 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 10.07.2020 
500 |a Date of Publication: 16 October 2014 
520 |a The high complexity of multi-scale, category-level object detection in cluttered scenes is efficiently handled by Hough voting methods. However, the main shortcoming of the approach is that mutually dependent local observations are independently casting their votes for intrinsically global object properties such as object scale. Object hypotheses are then assumed to be a mere sum of their part votes. Popular representation schemes are, however, based on a dense sampling of semi-local image features, which are consequently mutually dependent. We take advantage of part dependencies and incorporate them into probabilistic Hough voting by deriving an objective function that connects three intimately related problems: i) grouping mutually dependent parts, ii) solving the correspondence problem conjointly for dependent parts, and iii) finding concerted object hypotheses using extended groups rather than based on local observations alone. Early commitments are avoided by not restricting parts to only a single vote for a locally best correspondence and we learn a weighting of parts during training to reflect their differing relevance for an object. Experiments successfully demonstrate the benefit of incorporating part dependencies through grouping into Hough voting. The joint optimization of groupings, correspondences, and votes not only improves the detection accuracy over standard Hough voting and a sliding window baseline, but it also reduces the computational complexity by significantly decreasing the number of candidate hypotheses. 
534 |c 2014 
650 4 |a category theory 
650 4 |a category-level object detection 
650 4 |a cluttered scene 
650 4 |a computational complexity 
650 4 |a Computational modeling 
650 4 |a dense sampling 
650 4 |a dependent entity 
650 4 |a detection accuracy 
650 4 |a Feature extraction 
650 4 |a grouping 
650 4 |a Grouping 
650 4 |a Hough transforms 
650 4 |a hough voting 
650 4 |a Hough Voting 
650 4 |a Hough voting method 
650 4 |a image representation 
650 4 |a image sampling 
650 4 |a joint optimization 
650 4 |a Joints 
650 4 |a object detection 
650 4 |a Object detection 
650 4 |a object hypotheses 
650 4 |a object property 
650 4 |a optimisation 
650 4 |a popular representation scheme 
650 4 |a probabilistic Hough voting 
650 4 |a probability 
650 4 |a recognition 
650 4 |a Recognition 
650 4 |a semi-local image feature 
650 4 |a sliding window baseline 
650 4 |a Training 
650 4 |a Transforms 
650 4 |a Vectors 
650 4 |a visual learning 
650 4 |a Visual learning 
700 1 |a Ommer, Björn  |d 1981-  |e VerfasserIn  |0 (DE-588)1034893106  |0 (DE-627)746457510  |0 (DE-576)382507916  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on pattern analysis and machine intelligence  |d New York, NY : IEEE, 1979  |g 37(2015), 6, Seite 1134-1147  |h Online-Ressource  |w (DE-627)324486421  |w (DE-600)2027336-8  |w (DE-576)094110980  |x 1939-3539  |7 nnas 
773 1 8 |g volume:37  |g year:2015  |g number:6  |g pages:1134-1147  |g extent:14  |a Beyond the sum of parts voting with groups of dependent entities 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2363456  |x Verlag  |x Resolving-System 
951 |a AR 
992 |a 20200710 
993 |a Article 
994 |a 2015 
998 |g 1034893106  |a Ommer, Björn  |m 1034893106:Ommer, Björn  |d 700000  |d 708070  |e 700000PO1034893106  |e 708070PO1034893106  |k 0/700000/  |k 1/700000/708070/  |p 2  |y j 
999 |a KXP-PPN1724376497  |e 3723380271 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Beyond the sum of parts","title":"Beyond the sum of parts","subtitle":"voting with groups of dependent entities"}],"person":[{"family":"Yarlagadda","given":"Pradeep Krishna","display":"Yarlagadda, Pradeep Krishna","roleDisplay":"VerfasserIn","role":"aut"},{"display":"Ommer, Björn","roleDisplay":"VerfasserIn","role":"aut","family":"Ommer","given":"Björn"}],"language":["eng"],"recId":"1724376497","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 10.07.2020","Date of Publication: 16 October 2014"],"id":{"doi":["10.1109/TPAMI.2014.2363456"],"eki":["1724376497"]},"origin":[{"dateIssuedDisp":"2015","dateIssuedKey":"2015"}],"name":{"displayForm":["Pradeep Yarlagadda, Björn Ommer"]},"relHost":[{"name":{"displayForm":["Institute of Electrical and Electronics Engineers"]},"origin":[{"dateIssuedKey":"1979","publisher":"IEEE","dateIssuedDisp":"1979-","publisherPlace":"New York, NY"}],"id":{"issn":["1939-3539"],"eki":["324486421"],"zdb":["2027336-8"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"IEEE transactions on pattern analysis and machine intelligence","subtitle":"TPAMI","title":"IEEE transactions on pattern analysis and machine intelligence"}],"disp":"Institute of Electrical and Electronics EngineersIEEE transactions on pattern analysis and machine intelligence","note":["Gesehen am 07. März 2019"],"type":{"media":"Online-Ressource","bibl":"periodical"},"corporate":[{"role":"aut","display":"Institute of Electrical and Electronics Engineers","roleDisplay":"VerfasserIn"}],"language":["eng"],"recId":"324486421","pubHistory":["1.1979 -"],"titleAlt":[{"title":"Transactions on pattern analysis and machine intelligence"},{"title":"TPAMI"}],"part":{"issue":"6","pages":"1134-1147","year":"2015","extent":"14","volume":"37","text":"37(2015), 6, Seite 1134-1147"}}],"physDesc":[{"extent":"14 S."}]} 
SRT |a YARLAGADDABEYONDTHES2015