Quantum simulation of energy transport with embedded Rydberg aggregates

We show that an array of ultracold Rydberg atoms embedded in a laser driven background gas can serve as an aggregate for simulating exciton dynamics and energy transport with a controlled environment. Energetic disorder and decoherence introduced by the interaction with the background gas atoms can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schönleber, David Walther (VerfasserIn) , Eisfeld, Alexander (VerfasserIn) , Genkin, Michael (VerfasserIn) , Whitlock, Shannon (VerfasserIn) , Wüster, Sebastian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: March 27, 2015
In: Physical review letters
Year: 2015, Jahrgang: 114, Heft: 12
ISSN:1079-7114
DOI:10.1103/PhysRevLett.114.123005
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevLett.114.123005
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevLett.114.123005
Volltext
Verfasserangaben:D.W. Schönleber, A. Eisfeld, M. Genkin, S. Whitlock, and S. Wüster
Beschreibung
Zusammenfassung:We show that an array of ultracold Rydberg atoms embedded in a laser driven background gas can serve as an aggregate for simulating exciton dynamics and energy transport with a controlled environment. Energetic disorder and decoherence introduced by the interaction with the background gas atoms can be controlled by the laser parameters. This allows for an almost ideal realization of a Haken-Reineker-Strobl-type model for energy transport. The transport can be monitored using the same mechanism that provides control over the environment. The degree of decoherence is traced back to information gained on the excitation location through the monitoring, turning the setup into an experimentally accessible model system for studying the effects of quantum measurements on the dynamics of a many-body quantum system.
Beschreibung:Gesehen am 13.07.2020
Beschreibung:Online Resource
ISSN:1079-7114
DOI:10.1103/PhysRevLett.114.123005