Control of criticality and computation in spiking neuromorphic networks with plasticity

The critical state is assumed to be optimal for any computation in recurrent neural networks, because criticality maximizes a number of abstract computational properties. We challenge this assumption by evaluating the performance of a spiking recurrent neural network on a set of tasks of varying com...

Full description

Saved in:
Bibliographic Details
Main Authors: Cramer, Benjamin (Author) , Stöckel, David (Author) , Kreft, Markus (Author) , Wibral, Michael (Author) , Schemmel, Johannes (Author) , Meier, Karlheinz (Author) , Priesemann, Viola (Author)
Format: Article (Journal)
Language:English
Published: 05 June 2020
In: Nature Communications
Year: 2020, Volume: 11
ISSN:2041-1723
DOI:10.1038/s41467-020-16548-3
Online Access:Verlag, lizenzpflichtig, Volltext: http://dx.doi.org/10.1038/s41467-020-16548-3
Get full text
Author Notes:Benjamin Cramer, David Stöckel, Markus Kreft, Michael Wibral, Johannes Schemmel, Karlheinz Meier & Viola Priesemann

MARC

LEADER 00000caa a2200000 c 4500
001 1724496751
003 DE-627
005 20220818145623.0
007 cr uuu---uuuuu
008 200713s2020 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41467-020-16548-3  |2 doi 
035 |a (DE-627)1724496751 
035 |a (DE-599)KXP1724496751 
035 |a (OCoLC)1341345097 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Cramer, Benjamin  |d 1993-  |e VerfasserIn  |0 (DE-588)1125028068  |0 (DE-627)879345616  |0 (DE-576)483278572  |4 aut 
245 1 0 |a Control of criticality and computation in spiking neuromorphic networks with plasticity  |c Benjamin Cramer, David Stöckel, Markus Kreft, Michael Wibral, Johannes Schemmel, Karlheinz Meier & Viola Priesemann 
264 1 |c 05 June 2020 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 13.07.2020 
520 |a The critical state is assumed to be optimal for any computation in recurrent neural networks, because criticality maximizes a number of abstract computational properties. We challenge this assumption by evaluating the performance of a spiking recurrent neural network on a set of tasks of varying complexity at - and away from critical network dynamics. To that end, we developed a plastic spiking network on a neuromorphic chip. We show that the distance to criticality can be easily adapted by changing the input strength, and then demonstrate a clear relation between criticality, task-performance and information-theoretic fingerprint. Whereas the information-theoretic measures all show that network capacity is maximal at criticality, only the complex tasks profit from criticality, whereas simple tasks suffer. Thereby, we challenge the general assumption that criticality would be beneficial for any task, and provide instead an understanding of how the collective network state should be tuned to task requirement. Designing efficient artificial networks able to quickly converge to optimal performance for a given task remains a challenge. Here, the authors demonstrate a relation between criticality, task-performance and information theoretic fingerprint in a spiking neuromorphic network with synaptic plasticity. 
650 4 |a avalanches 
650 4 |a branching-processes 
650 4 |a chaos 
650 4 |a circuit 
650 4 |a dynamics 
650 4 |a edge 
650 4 |a partial information decomposition 
700 1 |a Stöckel, David  |e VerfasserIn  |0 (DE-588)1213675049  |0 (DE-627)172449290X  |4 aut 
700 1 |a Kreft, Markus  |e VerfasserIn  |0 (DE-588)1213675804  |0 (DE-627)1724494457  |4 aut 
700 1 |a Wibral, Michael  |d 1971-  |e VerfasserIn  |0 (DE-588)133152782  |0 (DE-627)537509917  |0 (DE-576)299657574  |4 aut 
700 1 |a Schemmel, Johannes  |e VerfasserIn  |0 (DE-588)1025834607  |0 (DE-627)72488291X  |0 (DE-576)370821440  |4 aut 
700 1 |a Meier, Karlheinz  |d 1955-2018  |e VerfasserIn  |0 (DE-588)1025835115  |0 (DE-627)724884114  |0 (DE-576)370822269  |4 aut 
700 1 |a Priesemann, Viola  |d 1982-  |e VerfasserIn  |0 (DE-588)1046553143  |0 (DE-627)776596195  |0 (DE-576)399887776  |4 aut 
773 0 8 |i Enthalten in  |t Nature Communications  |d [London] : Springer Nature, 2010  |g 11(2020) Artikel-Nummer 2853, 11 Seiten  |h Online-Ressource  |w (DE-627)626457688  |w (DE-600)2553671-0  |w (DE-576)331555905  |x 2041-1723  |7 nnas  |a Control of criticality and computation in spiking neuromorphic networks with plasticity 
773 1 8 |g volume:11  |g year:2020  |g extent:11  |a Control of criticality and computation in spiking neuromorphic networks with plasticity 
856 4 0 |u http://dx.doi.org/10.1038/s41467-020-16548-3  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200713 
993 |a Article 
994 |a 2020 
998 |g 1025835115  |a Meier, Karlheinz  |m 1025835115:Meier, Karlheinz  |d 130000  |d 130700  |e 130000PM1025835115  |e 130700PM1025835115  |k 0/130000/  |k 1/130000/130700/  |p 6 
998 |g 1025834607  |a Schemmel, Johannes  |m 1025834607:Schemmel, Johannes  |d 130000  |d 130700  |e 130000PS1025834607  |e 130700PS1025834607  |k 0/130000/  |k 1/130000/130700/  |p 5 
998 |g 1213675804  |a Kreft, Markus  |m 1213675804:Kreft, Markus  |p 3 
998 |g 1213675049  |a Stöckel, David  |m 1213675049:Stöckel, David  |p 2 
998 |g 1125028068  |a Cramer, Benjamin  |m 1125028068:Cramer, Benjamin  |d 130000  |d 130700  |e 130000PC1125028068  |e 130700PC1125028068  |k 0/130000/  |k 1/130000/130700/  |p 1  |x j 
999 |a KXP-PPN1724496751  |e 3723984835 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1038/s41467-020-16548-3"],"eki":["1724496751"]},"origin":[{"dateIssuedDisp":"05 June 2020","dateIssuedKey":"2020"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2553671-0"],"eki":["626457688"],"issn":["2041-1723"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Control of criticality and computation in spiking neuromorphic networks with plasticityNature Communications","origin":[{"publisherPlace":"[London] ; [London]","publisher":"Springer Nature ; Nature Publishing Group UK","dateIssuedDisp":"[2010]-"}],"note":["Gesehen am 13.06.24"],"recId":"626457688","title":[{"title":"Nature Communications","title_sort":"Nature Communications"}],"pubHistory":["2010-"],"language":["eng"],"part":{"volume":"11","extent":"11","year":"2020","text":"11(2020) Artikel-Nummer 2853, 11 Seiten"}}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"name":{"displayForm":["Benjamin Cramer, David Stöckel, Markus Kreft, Michael Wibral, Johannes Schemmel, Karlheinz Meier & Viola Priesemann"]},"person":[{"role":"aut","roleDisplay":"VerfasserIn","family":"Cramer","given":"Benjamin","display":"Cramer, Benjamin"},{"display":"Stöckel, David","given":"David","family":"Stöckel","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","given":"Markus","family":"Kreft","display":"Kreft, Markus"},{"given":"Michael","family":"Wibral","display":"Wibral, Michael","role":"aut","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","role":"aut","display":"Schemmel, Johannes","given":"Johannes","family":"Schemmel"},{"roleDisplay":"VerfasserIn","role":"aut","given":"Karlheinz","family":"Meier","display":"Meier, Karlheinz"},{"display":"Priesemann, Viola","family":"Priesemann","given":"Viola","roleDisplay":"VerfasserIn","role":"aut"}],"physDesc":[{"extent":"11 S."}],"recId":"1724496751","note":["Gesehen am 13.07.2020"],"language":["eng"],"title":[{"title_sort":"Control of criticality and computation in spiking neuromorphic networks with plasticity","title":"Control of criticality and computation in spiking neuromorphic networks with plasticity"}]} 
SRT |a CRAMERBENJCONTROLOFC0520