100 MHz frequency comb for low-intensity multi-photon studies: intra-cavity velocity-map imaging of xenon
We raise the power from a commercial 10 W frequency comb inside an enhancement cavity and perform multi-photon ionization of gas-phase atoms at 100 MHz for the first time, to the best of our knowledge. An intra-cavity velocity-map-imaging setup collects electron-energy spectra of xenon at rates seve...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
6 April 2020
|
| In: |
Optics letters
Year: 2020, Jahrgang: 45, Heft: 8, Pages: 2156-2159 |
| ISSN: | 1539-4794 |
| DOI: | 10.1364/OL.389327 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1364/OL.389327 Verlag, lizenzpflichtig, Volltext: https://www.osapublishing.org/ol/abstract.cfm?uri=ol-45-8-2156 |
| Verfasserangaben: | J. Nauta, J.-H. Oelmann, A. Ackermann, P. Knauer, R. Pappenberger, A. Borodin, I.S. Muhammad, H. Ledwa, T. Pfeifer and J.R. Crespo López-Urrutia |
| Zusammenfassung: | We raise the power from a commercial 10 W frequency comb inside an enhancement cavity and perform multi-photon ionization of gas-phase atoms at 100 MHz for the first time, to the best of our knowledge. An intra-cavity velocity-map-imaging setup collects electron-energy spectra of xenon at rates several orders of magnitude higher than those of conventional laser systems. Consequently, we can use much lower intensities ${\sim}{{10}^{12}} \;{\rm W}/{{\rm cm}^2} $∼1012W/cm2 without increasing acquisition times above just a few seconds. The high rate and coherence of the stabilized femtosecond pulses are known to be transferred to the actively stabilized cavity and will allow studying purely perturbative multi-photon effects, paving the road towards a new field of precision tests in nonlinear physics. |
|---|---|
| Beschreibung: | Gesehen am 15.07.2020 |
| Beschreibung: | Online Resource |
| ISSN: | 1539-4794 |
| DOI: | 10.1364/OL.389327 |