The damped Crank-Nicolson time-marching scheme for the adaptive solution of the Black-Scholes equation
This paper is concerned with the derivation of a residual-based a posteriori error estimator and mesh-adaptation strategies for the space-time finite element approximation of parabolic problems with irregular data. Typical applications arise in the field of mathematical finance, where the Black-Scho...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
30 April 2015
|
| In: |
The journal of computational finance
Year: 2015, Jahrgang: 18, Heft: 4, Pages: 1-37 |
| ISSN: | 1755-2850 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://www.risk.net/journal-of-computational-finance/2406534/the-damped-crank-nicolson-time-marching-scheme-for-the-adaptive-solution-of-the-black-scholes-equation |
| Verfasserangaben: | Christian Goll, Rolf Rannacher and Winnifried Wollner |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1725183838 | ||
| 003 | DE-627 | ||
| 005 | 20250522015506.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200721s2015 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.21314/JCF.2015.301 |2 doi | |
| 035 | |a (DE-627)1725183838 | ||
| 035 | |a (DE-599)KXP1725183838 | ||
| 035 | |a (OCoLC)1341347008 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Goll, Christian |e VerfasserIn |0 (DE-588)1053846967 |0 (DE-627)790795388 |0 (DE-576)409785733 |4 aut | |
| 245 | 1 | 4 | |a The damped Crank-Nicolson time-marching scheme for the adaptive solution of the Black-Scholes equation |c Christian Goll, Rolf Rannacher and Winnifried Wollner |
| 264 | 1 | |c 30 April 2015 | |
| 300 | |a 37 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 21.07.2020 | ||
| 520 | |a This paper is concerned with the derivation of a residual-based a posteriori error estimator and mesh-adaptation strategies for the space-time finite element approximation of parabolic problems with irregular data. Typical applications arise in the field of mathematical finance, where the Black-Scholes equation is used for modeling the pricing of European options. A conforming finite element discretization in space is combined with second-order time discretization by a damped Crank-Nicolson scheme for coping with data irregularities in the model. The a posteriori error analysis is developed within the general framework of the dual weighted residual method for sensitivity-based, goal-oriented error estimation and mesh optimization. In particular, the correct form of the dual problem with damping is considered. | ||
| 650 | 4 | |a Black-Scholes equation | |
| 650 | 4 | |a space-time finite elements | |
| 650 | 4 | |a damped Crank-Nicolson method | |
| 650 | 4 | |a goal-oriented adaptivity | |
| 650 | 4 | |a DWR method | |
| 650 | 4 | |a adjoint consistent | |
| 700 | 1 | |a Rannacher, Rolf |d 1948- |e VerfasserIn |0 (DE-588)108664732 |0 (DE-627)642491224 |0 (DE-576)335024076 |4 aut | |
| 700 | 1 | |a Wollner, Winnifried |d 1982- |e VerfasserIn |0 (DE-588)142041572 |0 (DE-627)633511293 |0 (DE-576)327473304 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t The journal of computational finance |d London : Infopro Digital Risk, 1997 |g 18(2015), 4, Seite 1-37 |h Online-Ressource |w (DE-627)355988216 |w (DE-600)2091445-3 |w (DE-576)339260653 |x 1755-2850 |7 nnas |a The damped Crank-Nicolson time-marching scheme for the adaptive solution of the Black-Scholes equation |
| 773 | 1 | 8 | |g volume:18 |g year:2015 |g number:4 |g pages:1-37 |g extent:37 |a The damped Crank-Nicolson time-marching scheme for the adaptive solution of the Black-Scholes equation |
| 776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Goll, Christian |t The damped Crank-Nicolson time-marching scheme for the adaptive solution of the Black-Scholes equation |d 2015 |w (DE-627)85248819X |w (DE-576)9852488198 |
| 856 | 4 | 0 | |u https://www.risk.net/journal-of-computational-finance/2406534/the-damped-crank-nicolson-time-marching-scheme-for-the-adaptive-solution-of-the-black-scholes-equation |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200721 | ||
| 993 | |a Article | ||
| 994 | |a 2015 | ||
| 998 | |g 108664732 |a Rannacher, Rolf |m 108664732:Rannacher, Rolf |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PR108664732 |e 110200PR108664732 |e 110000PR108664732 |e 110400PR108664732 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 2 | ||
| 998 | |g 1053846967 |a Goll, Christian |m 1053846967:Goll, Christian |p 1 |x j | ||
| 999 | |a KXP-PPN1725183838 |e 3726904131 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"year":"2015","extent":"37","volume":"18","text":"18(2015), 4, Seite 1-37","issue":"4","pages":"1-37"},"id":{"eki":["355988216"],"zdb":["2091445-3"],"issn":["1755-2850"]},"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 06. Februar 2017"],"pubHistory":["1.1997/98 -"],"title":[{"subtitle":"JFC","title":"The journal of computational finance","title_sort":"journal of computational finance"}],"language":["eng"],"recId":"355988216","disp":"The damped Crank-Nicolson time-marching scheme for the adaptive solution of the Black-Scholes equationThe journal of computational finance","origin":[{"dateIssuedDisp":"1997-","publisherPlace":"London ; London ; London ; London","publisher":"Infopro Digital Risk ; Risk Publ. ; Risk Waters Group ; Incisive Media","dateIssuedKey":"1997"}],"titleAlt":[{"title":"JFC"}]}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 21.07.2020"],"id":{"doi":["10.21314/JCF.2015.301"],"eki":["1725183838"]},"physDesc":[{"extent":"37 S."}],"name":{"displayForm":["Christian Goll, Rolf Rannacher and Winnifried Wollner"]},"title":[{"title":"The damped Crank-Nicolson time-marching scheme for the adaptive solution of the Black-Scholes equation","title_sort":"damped Crank-Nicolson time-marching scheme for the adaptive solution of the Black-Scholes equation"}],"origin":[{"dateIssuedKey":"2015","dateIssuedDisp":"30 April 2015"}],"recId":"1725183838","person":[{"roleDisplay":"VerfasserIn","display":"Goll, Christian","family":"Goll","role":"aut","given":"Christian"},{"role":"aut","given":"Rolf","family":"Rannacher","display":"Rannacher, Rolf","roleDisplay":"VerfasserIn"},{"role":"aut","given":"Winnifried","display":"Wollner, Winnifried","family":"Wollner","roleDisplay":"VerfasserIn"}],"language":["eng"]} | ||
| SRT | |a GOLLCHRISTDAMPEDCRAN3020 | ||