The damped Crank-Nicolson time-marching scheme for the adaptive solution of the Black-Scholes equation

This paper is concerned with the derivation of a residual-based a posteriori error estimator and mesh-adaptation strategies for the space-time finite element approximation of parabolic problems with irregular data. Typical applications arise in the field of mathematical finance, where the Black-Scho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Goll, Christian (VerfasserIn) , Rannacher, Rolf (VerfasserIn) , Wollner, Winnifried (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 30 April 2015
In: The journal of computational finance
Year: 2015, Jahrgang: 18, Heft: 4, Pages: 1-37
ISSN:1755-2850
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://www.risk.net/journal-of-computational-finance/2406534/the-damped-crank-nicolson-time-marching-scheme-for-the-adaptive-solution-of-the-black-scholes-equation
Volltext
Verfasserangaben:Christian Goll, Rolf Rannacher and Winnifried Wollner
Beschreibung
Zusammenfassung:This paper is concerned with the derivation of a residual-based a posteriori error estimator and mesh-adaptation strategies for the space-time finite element approximation of parabolic problems with irregular data. Typical applications arise in the field of mathematical finance, where the Black-Scholes equation is used for modeling the pricing of European options. A conforming finite element discretization in space is combined with second-order time discretization by a damped Crank-Nicolson scheme for coping with data irregularities in the model. The a posteriori error analysis is developed within the general framework of the dual weighted residual method for sensitivity-based, goal-oriented error estimation and mesh optimization. In particular, the correct form of the dual problem with damping is considered.
Beschreibung:Gesehen am 21.07.2020
Beschreibung:Online Resource
ISSN:1755-2850