Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components

Bayesian model averaging (BMA) is a statistical method for post-processing forecast ensembles of atmospheric variables, obtained from multiple runs of numerical weather prediction models, in order to create calibrated predictive probability density functions (PDFs). The BMA predictive PDF of the fut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Baran, Sándor (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 22 February 2014
In: Computational statistics & data analysis
Year: 2014, Jahrgang: 75, Pages: 227-238
DOI:10.1016/j.csda.2014.02.013
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.csda.2014.02.013
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S016794731400053X
Volltext
Verfasserangaben:Sándor Baran

MARC

LEADER 00000caa a2200000 c 4500
001 1725364042
003 DE-627
005 20220818155935.0
007 cr uuu---uuuuu
008 200723s2014 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.csda.2014.02.013  |2 doi 
035 |a (DE-627)1725364042 
035 |a (DE-599)KXP1725364042 
035 |a (OCoLC)1341347705 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Baran, Sándor  |e VerfasserIn  |0 (DE-588)171638077  |0 (DE-627)06186272X  |0 (DE-576)132417359  |4 aut 
245 1 0 |a Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components  |c Sándor Baran 
264 1 |c 22 February 2014 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 23.07.2020 
520 |a Bayesian model averaging (BMA) is a statistical method for post-processing forecast ensembles of atmospheric variables, obtained from multiple runs of numerical weather prediction models, in order to create calibrated predictive probability density functions (PDFs). The BMA predictive PDF of the future weather quantity is the mixture of the individual PDFs corresponding to the ensemble members and the weights and model parameters are estimated using forecast ensembles and validating observations from a given training period. A BMA model for calibrating wind speed forecasts is introduced using truncated normal distributions as conditional PDFs and the method is applied to the ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service and to the University of Washington Mesoscale Ensemble. Three parameter estimation methods are proposed and each of the corresponding models outperforms the traditional gamma BMA model both in calibration and in accuracy of predictions. 
650 4 |a Continuous ranked probability score 
650 4 |a Ensemble calibration 
650 4 |a Truncated normal distribution 
773 0 8 |i Enthalten in  |t Computational statistics & data analysis  |d Amsterdam : Elsevier Science, 1983  |g 75(2014), Seite 227-238  |h Online-Ressource  |w (DE-627)27093815X  |w (DE-600)1478763-5  |w (DE-576)081952511  |7 nnas  |a Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components 
773 1 8 |g volume:75  |g year:2014  |g pages:227-238  |g extent:12  |a Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components 
856 4 0 |u https://doi.org/10.1016/j.csda.2014.02.013  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S016794731400053X  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200723 
993 |a Article 
994 |a 2014 
998 |g 171638077  |a Baran, Sándor  |m 171638077:Baran, Sándor  |p 1  |x j  |y j 
999 |a KXP-PPN1725364042  |e 3728802611 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"role":"aut","display":"Baran, Sándor","roleDisplay":"VerfasserIn","given":"Sándor","family":"Baran"}],"title":[{"title_sort":"Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components","title":"Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components"}],"recId":"1725364042","language":["eng"],"note":["Gesehen am 23.07.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"name":{"displayForm":["Sándor Baran"]},"id":{"doi":["10.1016/j.csda.2014.02.013"],"eki":["1725364042"]},"origin":[{"dateIssuedKey":"2014","dateIssuedDisp":"22 February 2014"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Amsterdam","dateIssuedDisp":"1983-","publisher":"Elsevier Science","dateIssuedKey":"1983"}],"id":{"eki":["27093815X"],"zdb":["1478763-5"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal componentsComputational statistics & data analysis","note":["Gesehen am 06.01.2021"],"recId":"27093815X","language":["eng"],"pubHistory":["1.1983 - 56.2012; Vol. 57.2013 -"],"part":{"volume":"75","text":"75(2014), Seite 227-238","extent":"12","year":"2014","pages":"227-238"},"title":[{"title":"Computational statistics & data analysis","title_sort":"Computational statistics & data analysis"}]}],"physDesc":[{"extent":"12 S."}]} 
SRT |a BARANSANDOPROBABILIS2220