Monte Carlo study of a generalized icosahedral model on the simple cubic lattice

We study the critical behavior of a generalized icosahedral model on the simple cubic lattice. The field variable of the icosahedral model might take 1 of 12 vectors of unit length which are given by the normalized vertices of the icosahedron as value. Similar to the Blume-Capel model, where in addi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hasenbusch, Martin (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 6 July 2020
In: Physical review
Year: 2020, Jahrgang: 102, Heft: 2
ISSN:2469-9969
DOI:10.1103/PhysRevB.102.024406
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevB.102.024406
Volltext
Verfasserangaben:Martin Hasenbusch

MARC

LEADER 00000caa a2200000 c 4500
001 1725398451
003 DE-627
005 20220818160526.0
007 cr uuu---uuuuu
008 200723s2020 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevB.102.024406  |2 doi 
035 |a (DE-627)1725398451 
035 |a (DE-599)KXP1725398451 
035 |a (OCoLC)1341347723 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Hasenbusch, Martin  |e VerfasserIn  |0 (DE-588)1198238046  |0 (DE-627)1680556584  |4 aut 
245 1 0 |a Monte Carlo study of a generalized icosahedral model on the simple cubic lattice  |c Martin Hasenbusch 
264 1 |c 6 July 2020 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 23.07.2020 
520 |a We study the critical behavior of a generalized icosahedral model on the simple cubic lattice. The field variable of the icosahedral model might take 1 of 12 vectors of unit length which are given by the normalized vertices of the icosahedron as value. Similar to the Blume-Capel model, where in addition to -1 and 1, as in the Ising model, the spin might take the value 0, we add in the generalized model (0,0,0) as allowed value. There is a parameter D that controls the density of these voids. For a certain range of D, the model undergoes a second-order phase transition. On the critical line, O(3) symmetry emerges. Furthermore, we demonstrate that within this range, similar to the Blume-Capel model on the simple cubic lattice, there is a value of D, where leading corrections to scaling vanish. We perform Monte Carlo simulations for lattices of a linear size up to L = 400 by using a hybrid of local Metropolis and cluster updates. The motivation to study this particular model is mainly of technical nature. Less memory and CPU time are needed than for a model with O(3) symmetry at the microscopic level. As the result of a finite-size scaling analysis we obtain nu = 0.711 64(10), eta = 0.037 84(5), and omega = 0.759( 2) for the critical exponents of the three-dimensional Heisenberg universality class. The estimate of the irrelevant renormalization group eigenvalue that is related with the breaking the O(3) symmetry is y(ico) = -2.19(2). 
650 4 |a critical exponents 
650 4 |a renormalization-group 
773 0 8 |i Enthalten in  |t Physical review  |d Woodbury, NY : Inst., 2016  |g 102(2020,2) Artikel-Nummer 024406, 16 Seiten  |h Online-Ressource  |w (DE-627)845696750  |w (DE-600)2844160-6  |w (DE-576)454495846  |x 2469-9969  |7 nnas  |a Monte Carlo study of a generalized icosahedral model on the simple cubic lattice 
773 1 8 |g volume:102  |g year:2020  |g number:2  |g extent:16  |a Monte Carlo study of a generalized icosahedral model on the simple cubic lattice 
856 4 0 |u https://doi.org/10.1103/PhysRevB.102.024406  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200723 
993 |a Article 
994 |a 2020 
998 |g 1198238046  |a Hasenbusch, Martin  |m 1198238046:Hasenbusch, Martin  |d 130000  |d 130300  |e 130000PH1198238046  |e 130300PH1198238046  |k 0/130000/  |k 1/130000/130300/  |p 1  |x j  |y j 
999 |a KXP-PPN1725398451  |e 372893965X 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 23.07.2020"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1725398451","person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Hasenbusch, Martin","given":"Martin","family":"Hasenbusch"}],"title":[{"title":"Monte Carlo study of a generalized icosahedral model on the simple cubic lattice","title_sort":"Monte Carlo study of a generalized icosahedral model on the simple cubic lattice"}],"physDesc":[{"extent":"16 S."}],"relHost":[{"title":[{"title_sort":"Physical review","title":"Physical review"}],"part":{"issue":"2","year":"2020","extent":"16","volume":"102","text":"102(2020,2) Artikel-Nummer 024406, 16 Seiten"},"titleAlt":[{"title":"Condensed matter and materials physics"}],"pubHistory":["Vol. 93, Iss. 1, January 2016-"],"recId":"845696750","corporate":[{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"American Institute of Physics"},{"display":"American Physical Society","roleDisplay":"Herausgebendes Organ","role":"isb"}],"language":["eng"],"disp":"Monte Carlo study of a generalized icosahedral model on the simple cubic latticePhysical review","type":{"media":"Online-Ressource","bibl":"periodical"},"id":{"zdb":["2844160-6"],"eki":["845696750"],"issn":["2469-9969"]},"origin":[{"dateIssuedDisp":"2016-","dateIssuedKey":"2016","publisher":"Inst.","publisherPlace":"Woodbury, NY"}],"name":{"displayForm":["publ. by The American Institute of Physics"]},"physDesc":[{"extent":"Online-Ressource"}]}],"name":{"displayForm":["Martin Hasenbusch"]},"origin":[{"dateIssuedDisp":"6 July 2020","dateIssuedKey":"2020"}],"id":{"eki":["1725398451"],"doi":["10.1103/PhysRevB.102.024406"]}} 
SRT |a HASENBUSCHMONTECARLO6202