A rainbow blow-up lemma

We prove a rainbow version of the blow-up lemma of Komlós, Sárközy, and Szemerédi for μn-bounded edge colorings. This enables the systematic study of rainbow embeddings of bounded degree spanning subgraphs. As one application, we show how our blow-up lemma can be used to transfer the bandwidth t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Glock, Stefan (VerfasserIn) , Joos, Felix (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 February 2020
In: Random structures & algorithms
Year: 2020, Jahrgang: 56, Heft: 4, Pages: 1031-1069
ISSN:1098-2418
DOI:10.1002/rsa.20907
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/rsa.20907
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20907
Volltext
Verfasserangaben:Stefan Glock, Felix Joos
Beschreibung
Zusammenfassung:We prove a rainbow version of the blow-up lemma of Komlós, Sárközy, and Szemerédi for μn-bounded edge colorings. This enables the systematic study of rainbow embeddings of bounded degree spanning subgraphs. As one application, we show how our blow-up lemma can be used to transfer the bandwidth theorem of Böttcher, Schacht, and Taraz to the rainbow setting. It can also be employed as a tool beyond the setting of μn-bounded edge colorings. Kim, Kühn, Kupavskii, and Osthus exploit this to prove several rainbow decomposition results. Our proof methods include the strategy of an alternative proof of the blow-up lemma given by Rödl and Ruciński, the switching method, and the partial resampling algorithm developed by Harris and Srinivasan.
Beschreibung:Gesehen am 27.07.2020
Beschreibung:Online Resource
ISSN:1098-2418
DOI:10.1002/rsa.20907