A rainbow blow-up lemma

We prove a rainbow version of the blow-up lemma of Komlós, Sárközy, and Szemerédi for μn-bounded edge colorings. This enables the systematic study of rainbow embeddings of bounded degree spanning subgraphs. As one application, we show how our blow-up lemma can be used to transfer the bandwidth t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Glock, Stefan (VerfasserIn) , Joos, Felix (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 February 2020
In: Random structures & algorithms
Year: 2020, Jahrgang: 56, Heft: 4, Pages: 1031-1069
ISSN:1098-2418
DOI:10.1002/rsa.20907
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/rsa.20907
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20907
Volltext
Verfasserangaben:Stefan Glock, Felix Joos

MARC

LEADER 00000caa a2200000 c 4500
001 1725598132
003 DE-627
005 20220818161802.0
007 cr uuu---uuuuu
008 200727s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/rsa.20907  |2 doi 
035 |a (DE-627)1725598132 
035 |a (DE-599)KXP1725598132 
035 |a (OCoLC)1341348009 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Glock, Stefan  |e VerfasserIn  |0 (DE-588)1058404121  |0 (DE-627)796847827  |0 (DE-576)414583949  |4 aut 
245 1 2 |a A rainbow blow-up lemma  |c Stefan Glock, Felix Joos 
264 1 |c 20 February 2020 
300 |a 39 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.07.2020 
520 |a We prove a rainbow version of the blow-up lemma of Komlós, Sárközy, and Szemerédi for μn-bounded edge colorings. This enables the systematic study of rainbow embeddings of bounded degree spanning subgraphs. As one application, we show how our blow-up lemma can be used to transfer the bandwidth theorem of Böttcher, Schacht, and Taraz to the rainbow setting. It can also be employed as a tool beyond the setting of μn-bounded edge colorings. Kim, Kühn, Kupavskii, and Osthus exploit this to prove several rainbow decomposition results. Our proof methods include the strategy of an alternative proof of the blow-up lemma given by Rödl and Ruciński, the switching method, and the partial resampling algorithm developed by Harris and Srinivasan. 
650 4 |a bandwidth theorem 
650 4 |a blow-up lemma 
650 4 |a graph embedding 
650 4 |a rainbow colorings 
700 1 |a Joos, Felix  |d 1989-  |e VerfasserIn  |0 (DE-588)1075006171  |0 (DE-627)832846244  |0 (DE-576)442747438  |4 aut 
773 0 8 |i Enthalten in  |t Random structures & algorithms  |d New York, NY [u.a.] : Wiley, 1990  |g 56(2020), 4, Seite 1031-1069  |h Online-Ressource  |w (DE-627)306711141  |w (DE-600)1500812-5  |w (DE-576)082436185  |x 1098-2418  |7 nnas  |a A rainbow blow-up lemma 
773 1 8 |g volume:56  |g year:2020  |g number:4  |g pages:1031-1069  |g extent:39  |a A rainbow blow-up lemma 
856 4 0 |u https://doi.org/10.1002/rsa.20907  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20907  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200727 
993 |a Article 
994 |a 2020 
998 |g 1075006171  |a Joos, Felix  |m 1075006171:Joos, Felix  |d 110000  |d 110300  |e 110000PJ1075006171  |e 110300PJ1075006171  |k 0/110000/  |k 1/110000/110300/  |p 2  |y j 
999 |a KXP-PPN1725598132  |e 3729502239 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"note":["Gesehen am 17.02.05"],"pubHistory":["1.1990 -"],"language":["eng"],"part":{"extent":"39","pages":"1031-1069","issue":"4","text":"56(2020), 4, Seite 1031-1069","year":"2020","volume":"56"},"titleAlt":[{"title":"Random structures and algorithms"}],"disp":"A rainbow blow-up lemmaRandom structures & algorithms","type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"306711141","origin":[{"dateIssuedKey":"1990","publisherPlace":"New York, NY [u.a.]","publisher":"Wiley","dateIssuedDisp":"1990-"}],"title":[{"title_sort":"Random structures & algorithms","title":"Random structures & algorithms"}],"id":{"zdb":["1500812-5"],"doi":["10.1002/(ISSN)1098-2418"],"issn":["1098-2418"],"eki":["306711141"]},"physDesc":[{"extent":"Online-Ressource"}]}],"origin":[{"dateIssuedDisp":"20 February 2020","dateIssuedKey":"2020"}],"title":[{"title_sort":"rainbow blow-up lemma","title":"A rainbow blow-up lemma"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"eki":["1725598132"],"doi":["10.1002/rsa.20907"]},"physDesc":[{"extent":"39 S."}],"person":[{"family":"Glock","role":"aut","given":"Stefan","display":"Glock, Stefan"},{"role":"aut","family":"Joos","display":"Joos, Felix","given":"Felix"}],"recId":"1725598132","note":["Gesehen am 27.07.2020"],"language":["eng"],"name":{"displayForm":["Stefan Glock, Felix Joos"]}} 
SRT |a GLOCKSTEFARAINBOWBLO2020