The local callan-symanzik equation: structure and applications

The local Callan-Symanzik equation describes the response of a quantum field theory to local scale transformations in the presence of background sources. The consistency conditions associated with this anomalous equation imply non-trivial relations among the β-function, the anomalous dimensions of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Baume, Florent (VerfasserIn) , Keren-Zur, Boaz (VerfasserIn) , Rattazzi, Riccardo (VerfasserIn) , Vitale, Lorenzo (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: August 26, 2014
In: Journal of high energy physics
Year: 2014, Heft: 8
ISSN:1029-8479
DOI:10.1007/JHEP08(2014)152
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/JHEP08(2014)152
Verlag, lizenzpflichtig, Volltext: https://link.springer.com/article/10.1007%2FJHEP08%282014%29152
Volltext
Verfasserangaben:Florent Baume, Boaz Keren-Zur, Riccardo Rattazzi and Lorenzo Vitale

MARC

LEADER 00000caa a2200000 c 4500
001 1725657422
003 DE-627
005 20220818162345.0
007 cr uuu---uuuuu
008 200728s2014 xx |||||o 00| ||eng c
024 7 |a 10.1007/JHEP08(2014)152  |2 doi 
035 |a (DE-627)1725657422 
035 |a (DE-599)KXP1725657422 
035 |a (OCoLC)1341348677 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Baume, Florent  |d 1989-  |e VerfasserIn  |0 (DE-588)1095520016  |0 (DE-627)856140767  |0 (DE-576)462886468  |4 aut 
245 1 4 |a The local callan-symanzik equation  |b structure and applications  |c Florent Baume, Boaz Keren-Zur, Riccardo Rattazzi and Lorenzo Vitale 
264 1 |c August 26, 2014 
300 |a 55 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.07.2020 
520 |a The local Callan-Symanzik equation describes the response of a quantum field theory to local scale transformations in the presence of background sources. The consistency conditions associated with this anomalous equation imply non-trivial relations among the β-function, the anomalous dimensions of composite operators and the short distance singularities of correlators. In this paper we discuss various aspects of the local CallanSymanzik equation and present new results regarding the structure of its anomaly. We then use the equation to systematically write the n-point correlators involving the trace of the energy-momentum tensor. We use the latter result to give a fully detailed proof that the UV and IR asymptotics in a neighbourhood of a 4D CFT must also correspond to CFTs. We also clarify the relation between the matrix entering the gradient flow formula for the β-function and a manifestly positive metric in coupling space associated with matrix elements of the trace of the energy momentum tensor. 
700 1 |a Keren-Zur, Boaz  |e VerfasserIn  |4 aut 
700 1 |a Rattazzi, Riccardo  |e VerfasserIn  |4 aut 
700 1 |a Vitale, Lorenzo  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Journal of high energy physics  |d Berlin : Springer, 1997  |g (2014,8) Artikel-Nummer 152, 55 Seiten  |h Online-Ressource  |w (DE-627)320910571  |w (DE-600)2027350-2  |w (DE-576)095428305  |x 1029-8479  |7 nnas  |a The local callan-symanzik equation structure and applications 
773 1 8 |g year:2014  |g number:8  |g extent:55  |a The local callan-symanzik equation structure and applications 
856 4 0 |u https://doi.org/10.1007/JHEP08(2014)152  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007%2FJHEP08%282014%29152  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200728 
993 |a Article 
994 |a 2014 
998 |g 1095520016  |a Baume, Florent  |m 1095520016:Baume, Florent  |d 700000  |d 741000  |d 741010  |e 700000PB1095520016  |e 741000PB1095520016  |e 741010PB1095520016  |k 0/700000/  |k 1/700000/741000/  |k 2/700000/741000/741010/  |p 1  |x j 
999 |a KXP-PPN1725657422  |e 3730921908 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1725657422"],"doi":["10.1007/JHEP08(2014)152"]},"origin":[{"dateIssuedKey":"2014","dateIssuedDisp":"August 26, 2014"}],"name":{"displayForm":["Florent Baume, Boaz Keren-Zur, Riccardo Rattazzi and Lorenzo Vitale"]},"relHost":[{"title":[{"title":"Journal of high energy physics","subtitle":"JHEP ; a refereed journal written, run, and distributed by electronic means","title_sort":"Journal of high energy physics"}],"titleAlt":[{"title":"JHEP"}],"part":{"text":"(2014,8) Artikel-Nummer 152, 55 Seiten","extent":"55","year":"2014","issue":"8"},"pubHistory":["Nachgewiesen 1997 -"],"recId":"320910571","language":["eng"],"corporate":[{"display":"Institute of Physics","roleDisplay":"Herausgebendes Organ","role":"isb"}],"disp":"The local callan-symanzik equation structure and applicationsJournal of high energy physics","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 02.12.20"],"id":{"issn":["1029-8479"],"zdb":["2027350-2"],"eki":["320910571"]},"origin":[{"publisherPlace":"Berlin ; Heidelberg ; [Trieste] ; Bristol","dateIssuedDisp":"1997-","publisher":"Springer ; SISSA ; IOP Publ.","dateIssuedKey":"1997"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"55 S."}],"title":[{"subtitle":"structure and applications","title":"The local callan-symanzik equation","title_sort":"local callan-symanzik equation"}],"person":[{"given":"Florent","family":"Baume","role":"aut","display":"Baume, Florent","roleDisplay":"VerfasserIn"},{"family":"Keren-Zur","given":"Boaz","roleDisplay":"VerfasserIn","display":"Keren-Zur, Boaz","role":"aut"},{"family":"Rattazzi","given":"Riccardo","display":"Rattazzi, Riccardo","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Lorenzo","family":"Vitale","role":"aut","display":"Vitale, Lorenzo","roleDisplay":"VerfasserIn"}],"language":["eng"],"recId":"1725657422","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 28.07.2020"]} 
SRT |a BAUMEFLORELOCALCALLA2620