Bayesian motion estimation for dust aerosols

Dust storms in the earth’s major desert regions significantly influence microphysical weather processes, the CO22_{2}-cycle and the global climate in general. Recent increases in the spatio-temporal resolution of remote sensing instruments have created new opportunities to understand these phenomena...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bachl, Fabian (VerfasserIn) , Lenkoski, Alex (VerfasserIn) , Thorarinsdottir, Thordis (VerfasserIn) , Garbe, Christoph S. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2 November 2015
In: The annals of applied statistics
Year: 2015, Jahrgang: 9, Heft: 3, Pages: 1298-1327
ISSN:1941-7330
DOI:10.1214/15-AOAS835
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1214/15-AOAS835
Verlag, lizenzpflichtig, Volltext: https://projecteuclid.org/euclid.aoas/1446488740
Volltext
Verfasserangaben:by Fabian E. Bachl, Alex Lenkoski, Thordis L. Thorarinsdottir and Christoph S. Garbe

MARC

LEADER 00000caa a2200000 c 4500
001 1725823756
003 DE-627
005 20220818163019.0
007 cr uuu---uuuuu
008 200729s2015 xx |||||o 00| ||eng c
024 7 |a 10.1214/15-AOAS835  |2 doi 
035 |a (DE-627)1725823756 
035 |a (DE-599)KXP1725823756 
035 |a (OCoLC)1341348632 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Bachl, Fabian  |e VerfasserIn  |0 (DE-588)1066757267  |0 (DE-627)817931279  |0 (DE-576)426133838  |4 aut 
245 1 0 |a Bayesian motion estimation for dust aerosols  |c by Fabian E. Bachl, Alex Lenkoski, Thordis L. Thorarinsdottir and Christoph S. Garbe 
264 1 |c 2 November 2015 
300 |a 30 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.07.2020 
520 |a Dust storms in the earth’s major desert regions significantly influence microphysical weather processes, the CO22_{2}-cycle and the global climate in general. Recent increases in the spatio-temporal resolution of remote sensing instruments have created new opportunities to understand these phenomena. However, the scale of the data collected and the inherent stochasticity of the underlying process pose significant challenges, requiring a careful combination of image processing and statistical techniques. Using satellite imagery data, we develop a statistical model of atmospheric transport that relies on a latent Gaussian Markov random field (GMRF) for inference. In doing so, we make a link between the optical flow method of Horn and Schunck and the formulation of the transport process as a latent field in a generalized linear model. We critically extend this framework to satisfy the integrated continuity equation, thereby incorporating a flow field with nonzero divergence, and show that such an approach dramatically improves performance while remaining computationally feasible. Effects such as air compressibility and satellite column projection hence become intrinsic parts of this model. We conclude with a study of the dynamics of dust storms formed over Saharan Africa and show that our methodology is able to accurately and coherently track storm movement, a critical problem in this field. 
650 4 |a Gaussian Markov random field 
650 4 |a Horn and Schunck model 
650 4 |a integrated continuity equation 
650 4 |a integrated nested Laplace approximation (INLA) 
650 4 |a optical flow 
650 4 |a remote sensing 
650 4 |a Saharan dust storm 
650 4 |a satellite data 
650 4 |a storm tracking 
700 1 |a Lenkoski, Alex  |e VerfasserIn  |0 (DE-588)116174486X  |0 (DE-627)1025194209  |0 (DE-576)506837386  |4 aut 
700 1 |a Thorarinsdottir, Thordis  |e VerfasserIn  |0 (DE-588)1019806141  |0 (DE-627)691023662  |0 (DE-576)358817129  |4 aut 
700 1 |a Garbe, Christoph S.  |e VerfasserIn  |0 (DE-588)1067699120  |0 (DE-627)819101117  |0 (DE-576)426864662  |4 aut 
773 0 8 |i Enthalten in  |t The annals of applied statistics  |d Beachwood, Ohio : Inst. of Mathematical Statistics (IMS), 2007  |g 9(2015), 3, Seite 1298-1327  |h Online-Ressource  |w (DE-627)53744680X  |w (DE-600)2376910-5  |w (DE-576)267763565  |x 1941-7330  |7 nnas  |a Bayesian motion estimation for dust aerosols 
773 1 8 |g volume:9  |g year:2015  |g number:3  |g pages:1298-1327  |g extent:30  |a Bayesian motion estimation for dust aerosols 
856 4 0 |u https://doi.org/10.1214/15-AOAS835  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://projecteuclid.org/euclid.aoas/1446488740  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200729 
993 |a Article 
994 |a 2015 
998 |g 1067699120  |a Garbe, Christoph S.  |m 1067699120:Garbe, Christoph S.  |d 700000  |d 708070  |e 700000PG1067699120  |e 708070PG1067699120  |k 0/700000/  |k 1/700000/708070/  |p 4  |y j 
998 |g 1066757267  |a Bachl, Fabian  |m 1066757267:Bachl, Fabian  |p 1  |x j 
999 |a KXP-PPN1725823756  |e 3731879131 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 29.07.2020"],"language":["eng"],"recId":"1725823756","title":[{"title_sort":"Bayesian motion estimation for dust aerosols","title":"Bayesian motion estimation for dust aerosols"}],"person":[{"role":"aut","display":"Bachl, Fabian","roleDisplay":"VerfasserIn","given":"Fabian","family":"Bachl"},{"given":"Alex","family":"Lenkoski","role":"aut","roleDisplay":"VerfasserIn","display":"Lenkoski, Alex"},{"given":"Thordis","family":"Thorarinsdottir","role":"aut","roleDisplay":"VerfasserIn","display":"Thorarinsdottir, Thordis"},{"given":"Christoph S.","family":"Garbe","role":"aut","display":"Garbe, Christoph S.","roleDisplay":"VerfasserIn"}],"physDesc":[{"extent":"30 S."}],"relHost":[{"id":{"eki":["53744680X"],"zdb":["2376910-5"],"issn":["1941-7330"]},"origin":[{"publisherPlace":"Beachwood, Ohio ; Ithaca, NY","dateIssuedKey":"2007","publisher":"Inst. of Mathematical Statistics (IMS) ; Cornell University Library","dateIssuedDisp":"2007-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"The annals of applied statistics","subtitle":"an official journal of the Institute of Mathematical Statistics","title_sort":"annals of applied statistics"}],"corporate":[{"role":"isb","display":"Institute of Mathematical Statistics","roleDisplay":"Herausgebendes Organ"}],"language":["eng"],"recId":"53744680X","disp":"Bayesian motion estimation for dust aerosolsThe annals of applied statistics","note":["Gesehen am 02.08.2017"],"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"year":"2015","issue":"3","pages":"1298-1327","volume":"9","text":"9(2015), 3, Seite 1298-1327","extent":"30"},"pubHistory":["1.2007 -"]}],"origin":[{"dateIssuedKey":"2015","dateIssuedDisp":"2 November 2015"}],"id":{"eki":["1725823756"],"doi":["10.1214/15-AOAS835"]},"name":{"displayForm":["by Fabian E. Bachl, Alex Lenkoski, Thordis L. Thorarinsdottir and Christoph S. Garbe"]}} 
SRT |a BACHLFABIABAYESIANMO2201