Molecular basis of the mechanical hierarchy in myomesin dimers for sarcomere integrity

Myomesin is one of the most important structural molecules constructing the M-band in the force-generating unit of striated muscle, and a critical structural maintainer of the sarcomere. Using molecular dynamics simulations, we here dissect the mechanical properties of the structurally known buildin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiao, Senbo (VerfasserIn) , Gräter, Frauke (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 19 August 2014
In: Biophysical journal
Year: 2014, Jahrgang: 107, Heft: 4, Pages: 965-973
ISSN:1542-0086
DOI:10.1016/j.bpj.2014.06.043
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.bpj.2014.06.043
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0006349514006894
Volltext
Verfasserangaben:Senbo Xiao and Frauke Gräter
Beschreibung
Zusammenfassung:Myomesin is one of the most important structural molecules constructing the M-band in the force-generating unit of striated muscle, and a critical structural maintainer of the sarcomere. Using molecular dynamics simulations, we here dissect the mechanical properties of the structurally known building blocks of myomesin, namely α-helices, immunglobulin (Ig) domains, and the dimer interface at myomesin’s 13th Ig domain, covering the mechanically important C-terminal part of the molecule. We find the interdomain α-helices to be stabilized by the hydrophobic interface formed between the N-terminal half of these helices and adjacent Ig domains, and, interestingly, to show a rapid unfolding and refolding equilibrium especially under low axial forces up to ∼15 pN. These results support and yield atomic details for the notion of recent atomic-force microscopy experiments, namely, that the unique helices inserted between Ig domains in myomesin function as elastomers and force buffers. Our results also explain how the C-terminal dimer of two myomesin molecules is mechanically outperforming the helices and Ig domains in myomesin and elsewhere, explaining former experimental findings. This study provides a fresh view onto how myomesin integrates elastic helices, rigid immunoglobulin domains, and an extraordinarily resistant dimer into a molecular structure, to feature a mechanical hierarchy that represents a firm and yet extensible molecular anchor to guard the stability of the sarcomere.
Beschreibung:Gesehen am 29.07.2020
Beschreibung:Online Resource
ISSN:1542-0086
DOI:10.1016/j.bpj.2014.06.043