Continuous Galerkin and enriched Galerkin methods with arbitrary order discontinuous trial functions for the elliptic and parabolic problems with jump conditions

In this paper, a new version of the enriched Galerkin (EG) method for elliptic and parabolic equations is presented and analyzed, which is capable of dealing with a jump condition along a submanifold Gamma _LG. The jump condition is known as Henry’s law in a stationary diffusion process. Here, the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rupp, Andreas (VerfasserIn) , Lee, Sanghyun (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 23 June 2020
In: Journal of scientific computing
Year: 2020, Jahrgang: 84
ISSN:1573-7691
DOI:10.1007/s10915-020-01255-4
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10915-020-01255-4
Volltext
Verfasserangaben:Andreas Rupp, Sanghyun Lee

MARC

LEADER 00000caa a2200000 c 4500
001 1725924870
003 DE-627
005 20220818164130.0
007 cr uuu---uuuuu
008 200730s2020 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10915-020-01255-4  |2 doi 
035 |a (DE-627)1725924870 
035 |a (DE-599)KXP1725924870 
035 |a (OCoLC)1341348973 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Rupp, Andreas  |d 1992-  |e VerfasserIn  |0 (DE-588)1191198812  |0 (DE-627)1669602907  |4 aut 
245 1 0 |a Continuous Galerkin and enriched Galerkin methods with arbitrary order discontinuous trial functions for the elliptic and parabolic problems with jump conditions  |c Andreas Rupp, Sanghyun Lee 
264 1 |c 23 June 2020 
300 |a 25 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 30.07.2020 
520 |a In this paper, a new version of the enriched Galerkin (EG) method for elliptic and parabolic equations is presented and analyzed, which is capable of dealing with a jump condition along a submanifold Gamma _LG. The jump condition is known as Henry’s law in a stationary diffusion process. Here, the novel EG finite element method is constructed by enriching the continuous Galerkin finite element space by not only piecewise constants but also with piecewise polynomials with an arbitrary order. In addition, we extend the proposed method to consider new versions of a continuous Galerkin (CG) and a discontinuous Galerkin (DG) finite element method. The presented uniform analyses for CG, DG, and EG account for a spatially and temporally varying diffusion tensor which is also allowed to have a jump at Gamma _LG and gives optimal convergence results. Several numerical experiments verify the presented analyses and illustrate the capability of the proposed methods. 
700 1 |a Lee, Sanghyun  |e VerfasserIn  |0 (DE-588)1214833187  |0 (DE-627)1725926989  |4 aut 
773 0 8 |i Enthalten in  |t Journal of scientific computing  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1986  |g 84(2020) Artikel-Nummer 9, 25 Seiten  |h Online-Ressource  |w (DE-627)317878395  |w (DE-600)2017260-6  |w (DE-576)121466221  |x 1573-7691  |7 nnas  |a Continuous Galerkin and enriched Galerkin methods with arbitrary order discontinuous trial functions for the elliptic and parabolic problems with jump conditions 
773 1 8 |g volume:84  |g year:2020  |g extent:25  |a Continuous Galerkin and enriched Galerkin methods with arbitrary order discontinuous trial functions for the elliptic and parabolic problems with jump conditions 
856 4 0 |u https://doi.org/10.1007/s10915-020-01255-4  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200730 
993 |a Article 
994 |a 2020 
998 |g 1191198812  |a Rupp, Andreas  |m 1191198812:Rupp, Andreas  |d 700000  |d 708000  |e 700000PR1191198812  |e 708000PR1191198812  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1725924870  |e 373281792X 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"note":["Gesehen am 01.11.05"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Continuous Galerkin and enriched Galerkin methods with arbitrary order discontinuous trial functions for the elliptic and parabolic problems with jump conditionsJournal of scientific computing","recId":"317878395","language":["eng"],"pubHistory":["1.1986 -"],"part":{"volume":"84","text":"84(2020) Artikel-Nummer 9, 25 Seiten","extent":"25","year":"2020"},"title":[{"title":"Journal of scientific computing","title_sort":"Journal of scientific computing"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"New York, NY [u.a.] ; London [u.a.]","dateIssuedDisp":"1986-","publisher":"Springer Science + Business Media B.V. ; Kluwer","dateIssuedKey":"1986"}],"id":{"issn":["1573-7691"],"zdb":["2017260-6"],"eki":["317878395"]}}],"physDesc":[{"extent":"25 S."}],"name":{"displayForm":["Andreas Rupp, Sanghyun Lee"]},"id":{"eki":["1725924870"],"doi":["10.1007/s10915-020-01255-4"]},"origin":[{"dateIssuedDisp":"23 June 2020","dateIssuedKey":"2020"}],"recId":"1725924870","language":["eng"],"note":["Gesehen am 30.07.2020"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Rupp, Andreas","given":"Andreas","family":"Rupp"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Lee, Sanghyun","given":"Sanghyun","family":"Lee"}],"title":[{"title_sort":"Continuous Galerkin and enriched Galerkin methods with arbitrary order discontinuous trial functions for the elliptic and parabolic problems with jump conditions","title":"Continuous Galerkin and enriched Galerkin methods with arbitrary order discontinuous trial functions for the elliptic and parabolic problems with jump conditions"}]} 
SRT |a RUPPANDREACONTINUOUS2320