Efficient approximation of flow problems with multiple scales in time

In this article we address flow problems that carry a multiscale character in time. In particular we consider the Navier--Stokes flow in a channel on a fast scale that influences the movement of the boundary which undergoes a deformation on a slow scale in time. We derive an averaging scheme that i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Frei, Stefan (VerfasserIn) , Richter, Thomas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 1, 2020
In: Multiscale modeling & simulation
Year: 2020, Jahrgang: 18, Heft: 2, Pages: 942-969
ISSN:1540-3467
DOI:10.1137/19M1258396
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/19M1258396
Verlag, lizenzpflichtig, Volltext: https://epubs.siam.org/doi/abs/10.1137/19M1258396
Volltext
Verfasserangaben:S. Frei and T. Richter
Beschreibung
Zusammenfassung:In this article we address flow problems that carry a multiscale character in time. In particular we consider the Navier--Stokes flow in a channel on a fast scale that influences the movement of the boundary which undergoes a deformation on a slow scale in time. We derive an averaging scheme that is of first order with respect to the ratio of time scales $\epsilon$. In order to cope with the problem of unknown initial data for the fast-scale problem, we assume near-periodicity in time. Moreover, we construct a second-order accurate time discretization scheme and derive a complete error analysis for a corresponding simplified ODE system. The resulting multiscale scheme does not ask for the continuous simulation of the fast-scale variable and shows powerful speedups up to 1:10,000 compared to a resolved simulation. Finally, we present some numerical examples for the full Navier--Stokes system to illustrate the convergence and performance of the approach.
Beschreibung:Gesehen am 04.08.2020
Beschreibung:Online Resource
ISSN:1540-3467
DOI:10.1137/19M1258396