Morphological stability of rod-shaped continuous phases
Morphological transition of a rod-shaped phase into a string of spherical particles is commonly observed in the microstructures of alloys during solidification (Ratke and Mueller, 2006). This transition phenomenon can be explained by the classic Plateau-Rayleigh theory which was derived for fluid je...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
19 April 2020
|
| In: |
Acta materialia
Year: 2020, Jahrgang: 192, Pages: 20-29 |
| ISSN: | 1873-2453 |
| DOI: | 10.1016/j.actamat.2020.04.028 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.actamat.2020.04.028 Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S1359645420302858 |
| Verfasserangaben: | Fei Wang, Oleg Tschukin, Thomas Leisner, Haodong Zhang, Britta Nestler, Michael Selzer, Gabriel Cadilha Marques, Jasmin Aghassi-Hagmann |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1726717143 | ||
| 003 | DE-627 | ||
| 005 | 20220818172438.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200810s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.actamat.2020.04.028 |2 doi | |
| 035 | |a (DE-627)1726717143 | ||
| 035 | |a (DE-599)KXP1726717143 | ||
| 035 | |a (OCoLC)1341354786 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 31 |2 sdnb | ||
| 100 | 1 | |a Wang, Fei |e VerfasserIn |0 (DE-588)1136809686 |0 (DE-627)893609935 |0 (DE-576)49086130X |4 aut | |
| 245 | 1 | 0 | |a Morphological stability of rod-shaped continuous phases |c Fei Wang, Oleg Tschukin, Thomas Leisner, Haodong Zhang, Britta Nestler, Michael Selzer, Gabriel Cadilha Marques, Jasmin Aghassi-Hagmann |
| 264 | 1 | |c 19 April 2020 | |
| 300 | |a 10 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 10.08.2020 | ||
| 520 | |a Morphological transition of a rod-shaped phase into a string of spherical particles is commonly observed in the microstructures of alloys during solidification (Ratke and Mueller, 2006). This transition phenomenon can be explained by the classic Plateau-Rayleigh theory which was derived for fluid jets based on the surface area minimization principle. The quintessential work of Plateau-Rayleigh considers tiny perturbations (amplitude much less than the radius) to the continuous phase and for large amplitude perturbations, the breakup condition for the rod-shaped phase is still a knotty issue. Here, we present a concise thermodynamic model based on the surface area minimization principle as well as a non-linear stability analysis to generalize Plateau-Rayleigh’s criterion for finite amplitude perturbations. Our results demonstrate a breakup transition from a continuous phase via dispersed particles towards a uniform-radius cylinder, which has not been found previously, but is observed in our phase-field simulations. This new observation is attributed to a geometric constraint, which was overlooked in former studies. We anticipate that our results can provide further insights on microstructures with spherical particles and cylinder-shaped phases. | ||
| 650 | 4 | |a Gradient descent method | |
| 650 | 4 | |a Phase-field | |
| 650 | 4 | |a Plateau-Rayleigh instability | |
| 650 | 4 | |a Surface area minimization | |
| 700 | 1 | |a Leisner, Thomas |d 1961- |e VerfasserIn |0 (DE-588)131429825 |0 (DE-627)508786622 |0 (DE-576)298472392 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Acta materialia |d Amsterdam [u.a.] : Elsevier Science, 1996 |g 192(2020), Seite 20-29 |h Online-Ressource |w (DE-627)320521338 |w (DE-600)2014621-8 |w (DE-576)094449422 |x 1873-2453 |7 nnas |a Morphological stability of rod-shaped continuous phases |
| 773 | 1 | 8 | |g volume:192 |g year:2020 |g pages:20-29 |g extent:10 |a Morphological stability of rod-shaped continuous phases |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.actamat.2020.04.028 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1359645420302858 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200810 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 131429825 |a Leisner, Thomas |m 131429825:Leisner, Thomas |d 130000 |e 130000PL131429825 |k 0/130000/ |p 3 | ||
| 999 | |a KXP-PPN1726717143 |e 3737332452 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title":"Morphological stability of rod-shaped continuous phases","title_sort":"Morphological stability of rod-shaped continuous phases"}],"person":[{"family":"Wang","given":"Fei","display":"Wang, Fei","roleDisplay":"VerfasserIn","role":"aut"},{"display":"Leisner, Thomas","roleDisplay":"VerfasserIn","role":"aut","family":"Leisner","given":"Thomas"}],"language":["eng"],"recId":"1726717143","note":["Gesehen am 10.08.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"doi":["10.1016/j.actamat.2020.04.028"],"eki":["1726717143"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"19 April 2020"}],"name":{"displayForm":["Fei Wang, Oleg Tschukin, Thomas Leisner, Haodong Zhang, Britta Nestler, Michael Selzer, Gabriel Cadilha Marques, Jasmin Aghassi-Hagmann"]},"relHost":[{"title":[{"title_sort":"Acta materialia","title":"Acta materialia"}],"recId":"320521338","language":["eng"],"note":["Gesehen am 05.07.2023"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Morphological stability of rod-shaped continuous phasesActa materialia","part":{"extent":"10","volume":"192","text":"192(2020), Seite 20-29","pages":"20-29","year":"2020"},"pubHistory":["44.1996 -"],"id":{"issn":["1873-2453"],"eki":["320521338"],"zdb":["2014621-8"]},"origin":[{"publisherPlace":"Amsterdam [u.a.]","publisher":"Elsevier Science","dateIssuedKey":"1996","dateIssuedDisp":"1996-"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"10 S."}]} | ||
| SRT | |a WANGFEILEIMORPHOLOGI1920 | ||