Morphological stability of rod-shaped continuous phases

Morphological transition of a rod-shaped phase into a string of spherical particles is commonly observed in the microstructures of alloys during solidification (Ratke and Mueller, 2006). This transition phenomenon can be explained by the classic Plateau-Rayleigh theory which was derived for fluid je...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wang, Fei (VerfasserIn) , Leisner, Thomas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 19 April 2020
In: Acta materialia
Year: 2020, Jahrgang: 192, Pages: 20-29
ISSN:1873-2453
DOI:10.1016/j.actamat.2020.04.028
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.actamat.2020.04.028
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S1359645420302858
Volltext
Verfasserangaben:Fei Wang, Oleg Tschukin, Thomas Leisner, Haodong Zhang, Britta Nestler, Michael Selzer, Gabriel Cadilha Marques, Jasmin Aghassi-Hagmann

MARC

LEADER 00000caa a2200000 c 4500
001 1726717143
003 DE-627
005 20220818172438.0
007 cr uuu---uuuuu
008 200810s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.actamat.2020.04.028  |2 doi 
035 |a (DE-627)1726717143 
035 |a (DE-599)KXP1726717143 
035 |a (OCoLC)1341354786 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 31  |2 sdnb 
100 1 |a Wang, Fei  |e VerfasserIn  |0 (DE-588)1136809686  |0 (DE-627)893609935  |0 (DE-576)49086130X  |4 aut 
245 1 0 |a Morphological stability of rod-shaped continuous phases  |c Fei Wang, Oleg Tschukin, Thomas Leisner, Haodong Zhang, Britta Nestler, Michael Selzer, Gabriel Cadilha Marques, Jasmin Aghassi-Hagmann 
264 1 |c 19 April 2020 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 10.08.2020 
520 |a Morphological transition of a rod-shaped phase into a string of spherical particles is commonly observed in the microstructures of alloys during solidification (Ratke and Mueller, 2006). This transition phenomenon can be explained by the classic Plateau-Rayleigh theory which was derived for fluid jets based on the surface area minimization principle. The quintessential work of Plateau-Rayleigh considers tiny perturbations (amplitude much less than the radius) to the continuous phase and for large amplitude perturbations, the breakup condition for the rod-shaped phase is still a knotty issue. Here, we present a concise thermodynamic model based on the surface area minimization principle as well as a non-linear stability analysis to generalize Plateau-Rayleigh’s criterion for finite amplitude perturbations. Our results demonstrate a breakup transition from a continuous phase via dispersed particles towards a uniform-radius cylinder, which has not been found previously, but is observed in our phase-field simulations. This new observation is attributed to a geometric constraint, which was overlooked in former studies. We anticipate that our results can provide further insights on microstructures with spherical particles and cylinder-shaped phases. 
650 4 |a Gradient descent method 
650 4 |a Phase-field 
650 4 |a Plateau-Rayleigh instability 
650 4 |a Surface area minimization 
700 1 |a Leisner, Thomas  |d 1961-  |e VerfasserIn  |0 (DE-588)131429825  |0 (DE-627)508786622  |0 (DE-576)298472392  |4 aut 
773 0 8 |i Enthalten in  |t Acta materialia  |d Amsterdam [u.a.] : Elsevier Science, 1996  |g 192(2020), Seite 20-29  |h Online-Ressource  |w (DE-627)320521338  |w (DE-600)2014621-8  |w (DE-576)094449422  |x 1873-2453  |7 nnas  |a Morphological stability of rod-shaped continuous phases 
773 1 8 |g volume:192  |g year:2020  |g pages:20-29  |g extent:10  |a Morphological stability of rod-shaped continuous phases 
856 4 0 |u https://doi.org/10.1016/j.actamat.2020.04.028  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S1359645420302858  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200810 
993 |a Article 
994 |a 2020 
998 |g 131429825  |a Leisner, Thomas  |m 131429825:Leisner, Thomas  |d 130000  |e 130000PL131429825  |k 0/130000/  |p 3 
999 |a KXP-PPN1726717143  |e 3737332452 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"Morphological stability of rod-shaped continuous phases","title_sort":"Morphological stability of rod-shaped continuous phases"}],"person":[{"family":"Wang","given":"Fei","display":"Wang, Fei","roleDisplay":"VerfasserIn","role":"aut"},{"display":"Leisner, Thomas","roleDisplay":"VerfasserIn","role":"aut","family":"Leisner","given":"Thomas"}],"language":["eng"],"recId":"1726717143","note":["Gesehen am 10.08.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"doi":["10.1016/j.actamat.2020.04.028"],"eki":["1726717143"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"19 April 2020"}],"name":{"displayForm":["Fei Wang, Oleg Tschukin, Thomas Leisner, Haodong Zhang, Britta Nestler, Michael Selzer, Gabriel Cadilha Marques, Jasmin Aghassi-Hagmann"]},"relHost":[{"title":[{"title_sort":"Acta materialia","title":"Acta materialia"}],"recId":"320521338","language":["eng"],"note":["Gesehen am 05.07.2023"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Morphological stability of rod-shaped continuous phasesActa materialia","part":{"extent":"10","volume":"192","text":"192(2020), Seite 20-29","pages":"20-29","year":"2020"},"pubHistory":["44.1996 -"],"id":{"issn":["1873-2453"],"eki":["320521338"],"zdb":["2014621-8"]},"origin":[{"publisherPlace":"Amsterdam [u.a.]","publisher":"Elsevier Science","dateIssuedKey":"1996","dateIssuedDisp":"1996-"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"10 S."}]} 
SRT |a WANGFEILEIMORPHOLOGI1920