Energy conserving Galerkin finite element methods for the Maxwell-Klein-Gordon system

In this paper, we consider the Galerkin finite element methods for the Maxwell- Klein-Gordon system in the Coulomb gauge. We propose a semidiscrete finite element method for the system with the mixed finite element approximation of the vector potential. Energy conservation and error estimates are es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ma, Chupeng (VerfasserIn) , Cao, Liqun (VerfasserIn) , Lin, Yanping (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29 April 2020
In: SIAM journal on numerical analysis
Year: 2020, Jahrgang: 58, Heft: 2, Pages: 1339-1366
ISSN:1095-7170
DOI:10.1137/17M1158690
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/17M1158690
Volltext
Verfasserangaben:Chupeng Ma, Liqun Cao, and Yanping Lin

MARC

LEADER 00000caa a2200000 c 4500
001 1726865843
003 DE-627
005 20220818173742.0
007 cr uuu---uuuuu
008 200812s2020 xx |||||o 00| ||eng c
024 7 |a 10.1137/17M1158690  |2 doi 
035 |a (DE-627)1726865843 
035 |a (DE-599)KXP1726865843 
035 |a (OCoLC)1341355141 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Ma, Chupeng  |e VerfasserIn  |0 (DE-588)1215789548  |0 (DE-627)1726867072  |4 aut 
245 1 0 |a Energy conserving Galerkin finite element methods for the Maxwell-Klein-Gordon system  |c Chupeng Ma, Liqun Cao, and Yanping Lin 
264 1 |c 29 April 2020 
300 |a 28 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.08.2020 
520 |a In this paper, we consider the Galerkin finite element methods for the Maxwell- Klein-Gordon system in the Coulomb gauge. We propose a semidiscrete finite element method for the system with the mixed finite element approximation of the vector potential. Energy conservation and error estimates are established for this scheme. A novel energy conserving time integration scheme is presented for solving the semidiscrete system. The existence and uniqueness of solutions to the fully discrete system are proved under some assumptions. Numerical experiments are carried out to support our theoretical analysis. 
650 4 |a 2nd-order scheme 
650 4 |a backward error analysis 
650 4 |a convergence 
650 4 |a energy conservation 
650 4 |a equation 
650 4 |a error estimates 
650 4 |a finite element method 
650 4 |a Maxwell-Klein-Gordon 
650 4 |a time integration scheme 
700 1 |a Cao, Liqun  |e VerfasserIn  |0 (DE-588)1215790562  |0 (DE-627)172686958X  |4 aut 
700 1 |a Lin, Yanping  |e VerfasserIn  |0 (DE-588)1215791100  |0 (DE-627)1726870855  |4 aut 
773 0 8 |i Enthalten in  |a Society for Industrial and Applied Mathematics  |t SIAM journal on numerical analysis  |d Philadelphia, Pa. : SIAM, 1966  |g 58(2020), 2, Seite 1339-1366  |h Online-Ressource  |w (DE-627)266885446  |w (DE-600)1468409-3  |w (DE-576)075961660  |x 1095-7170  |7 nnas 
773 1 8 |g volume:58  |g year:2020  |g number:2  |g pages:1339-1366  |g extent:28  |a Energy conserving Galerkin finite element methods for the Maxwell-Klein-Gordon system 
856 4 0 |u https://doi.org/10.1137/17M1158690  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200812 
993 |a Article 
994 |a 2020 
998 |g 1215789548  |a Ma, Chupeng  |m 1215789548:Ma, Chupeng  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PM1215789548  |e 110200PM1215789548  |e 110000PM1215789548  |e 110400PM1215789548  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1726865843  |e 3738665188 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1726865843"],"doi":["10.1137/17M1158690"]},"name":{"displayForm":["Chupeng Ma, Liqun Cao, and Yanping Lin"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1726865843","physDesc":[{"extent":"28 S."}],"title":[{"title":"Energy conserving Galerkin finite element methods for the Maxwell-Klein-Gordon system","title_sort":"Energy conserving Galerkin finite element methods for the Maxwell-Klein-Gordon system"}],"person":[{"display":"Ma, Chupeng","role":"aut","given":"Chupeng","family":"Ma"},{"family":"Cao","given":"Liqun","role":"aut","display":"Cao, Liqun"},{"given":"Yanping","family":"Lin","display":"Lin, Yanping","role":"aut"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Philadelphia, Pa.","dateIssuedKey":"1966","publisher":"SIAM","dateIssuedDisp":"1966-"}],"note":["Gesehen am 02.07.2021"],"pubHistory":["3.1966 -"],"id":{"zdb":["1468409-3"],"issn":["1095-7170"],"eki":["266885446"]},"recId":"266885446","name":{"displayForm":["Society for Industrial and Applied Mathematics"]},"part":{"issue":"2","text":"58(2020), 2, Seite 1339-1366","pages":"1339-1366","extent":"28","year":"2020","volume":"58"},"corporate":[{"display":"Society for Industrial and Applied Mathematics","role":"aut"}],"title":[{"title":"SIAM journal on numerical analysis","title_sort":"SIAM journal on numerical analysis"}],"disp":"Society for Industrial and Applied MathematicsSIAM journal on numerical analysis","titleAlt":[{"title":"Journal on numerical analysis"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"]}],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"29 April 2020"}],"note":["Gesehen am 12.08.2020"]} 
SRT |a MACHUPENGCENERGYCONS2920