Mixture EMOS model for calibrating ensemble forecasts of wind speed

Ensemble model output statistics (EMOS) is a statistical tool for post-processing forecast ensembles of weather variables obtained from multiple runs of numerical weather prediction models in order to produce calibrated predictive probability density functions. The EMOS predictive probability densit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Baran, Sándor (VerfasserIn) , Lerch, Sebastian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 17 January 2016
In: Environmetrics
Year: 2016, Jahrgang: 27, Heft: 2, Pages: 116-130
ISSN:1099-095X
DOI:10.1002/env.2380
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/env.2380
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/env.2380
Volltext
Verfasserangaben:S. Baran and S. Lerch

MARC

LEADER 00000caa a2200000 c 4500
001 1727457757
003 DE-627
005 20220818181011.0
007 cr uuu---uuuuu
008 200819s2016 xx |||||o 00| ||eng c
024 7 |a 10.1002/env.2380  |2 doi 
035 |a (DE-627)1727457757 
035 |a (DE-599)KXP1727457757 
035 |a (OCoLC)1341355819 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Baran, Sándor  |e VerfasserIn  |0 (DE-588)171638077  |0 (DE-627)06186272X  |0 (DE-576)132417359  |4 aut 
245 1 0 |a Mixture EMOS model for calibrating ensemble forecasts of wind speed  |c S. Baran and S. Lerch 
264 1 |c 17 January 2016 
300 |a 5 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 19.08.2020 
520 |a Ensemble model output statistics (EMOS) is a statistical tool for post-processing forecast ensembles of weather variables obtained from multiple runs of numerical weather prediction models in order to produce calibrated predictive probability density functions. The EMOS predictive probability density function is given by a parametric distribution with parameters depending on the ensemble forecasts. We propose an EMOS model for calibrating wind speed forecasts based on weighted mixtures of truncated normal (TN) and log-normal (LN) distributions where model parameters and component weights are estimated by optimizing the values of proper scoring rules over a rolling training period. The new model is tested on wind speed forecasts of the 50 member European Centre for Medium-range Weather Forecasts ensemble, the 11 member Aire Limitée Adaptation dynamique Développement International-Hungary Ensemble Prediction System ensemble of the Hungarian Meteorological Service, and the eight-member University of Washington mesoscale ensemble, and its predictive performance is compared with that of various benchmark EMOS models based on single parametric families and combinations thereof. The results indicate improved calibration of probabilistic and accuracy of point forecasts in comparison with the raw ensemble and climatological forecasts. The mixture EMOS model significantly outperforms the TN and LN EMOS methods; moreover, it provides better calibrated forecasts than the TN-LN combination model and offers an increased flexibility while avoiding covariate selection problems. © 2016 The Authors Environmetrics Published by JohnWiley & Sons Ltd. 
650 4 |a continuous ranked probability score 
650 4 |a ensemble calibration 
650 4 |a ensemble model output statistics 
650 4 |a log-normal distribution 
650 4 |a truncated normal distribution 
700 1 |a Lerch, Sebastian  |e VerfasserIn  |0 (DE-588)1103840096  |0 (DE-627)86156636X  |0 (DE-576)47079321X  |4 aut 
773 0 8 |i Enthalten in  |t Environmetrics  |d Chichester, West Sussex : Wiley, 1991  |g 27(2016), 2, Seite 116-130  |h Online-Ressource  |w (DE-627)265783844  |w (DE-600)1466308-9  |w (DE-576)079718663  |x 1099-095X  |7 nnas  |a Mixture EMOS model for calibrating ensemble forecasts of wind speed 
773 1 8 |g volume:27  |g year:2016  |g number:2  |g pages:116-130  |g extent:5  |a Mixture EMOS model for calibrating ensemble forecasts of wind speed 
856 4 0 |u https://doi.org/10.1002/env.2380  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/env.2380  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200819 
993 |a Article 
994 |a 2016 
998 |g 1103840096  |a Lerch, Sebastian  |m 1103840096:Lerch, Sebastian  |p 2  |y j 
999 |a KXP-PPN1727457757  |e 3741197998 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"Mixture EMOS model for calibrating ensemble forecasts of wind speed","title_sort":"Mixture EMOS model for calibrating ensemble forecasts of wind speed"}],"person":[{"roleDisplay":"VerfasserIn","display":"Baran, Sándor","role":"aut","family":"Baran","given":"Sándor"},{"display":"Lerch, Sebastian","roleDisplay":"VerfasserIn","role":"aut","family":"Lerch","given":"Sebastian"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 19.08.2020"],"recId":"1727457757","language":["eng"],"origin":[{"dateIssuedDisp":"17 January 2016","dateIssuedKey":"2016"}],"id":{"doi":["10.1002/env.2380"],"eki":["1727457757"]},"name":{"displayForm":["S. Baran and S. Lerch"]},"physDesc":[{"extent":"5 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1099-095X"],"eki":["265783844"],"doi":["10.1002/(ISSN)1099-095X"],"zdb":["1466308-9"]},"origin":[{"publisherPlace":"Chichester, West Sussex","dateIssuedDisp":"1991-","publisher":"Wiley","dateIssuedKey":"1991"}],"language":["eng"],"recId":"265783844","disp":"Mixture EMOS model for calibrating ensemble forecasts of wind speedEnvironmetrics","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 27.02.08"],"part":{"text":"27(2016), 2, Seite 116-130","volume":"27","extent":"5","year":"2016","issue":"2","pages":"116-130"},"pubHistory":["1.1991 -"],"title":[{"title_sort":"Environmetrics","title":"Environmetrics","subtitle":"the official journal of the International Environmetrics Society (TIES)"}]}]} 
SRT |a BARANSANDOMIXTUREEMO1720