Exploration of OpenStreetMap missing built-up areas using twitter hierarchical clustering and deep learning in Mozambique

Accurate and detailed geographical information digitizing human activity patterns plays an essential role in response to natural disasters. Volunteered geographical information, in particular OpenStreetMap (OSM), shows great potential in providing the knowledge of human settlements to support humani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Hao (VerfasserIn) , Herfort, Benjamin (VerfasserIn) , Huang, Wei (VerfasserIn) , Zia, Mohammed (VerfasserIn) , Zipf, Alexander (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 07 June 2020
In: ISPRS journal of photogrammetry and remote sensing
Year: 2020, Jahrgang: 166, Pages: 41-51
ISSN:0924-2716
DOI:10.1016/j.isprsjprs.2020.05.007
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.isprsjprs.2020.05.007
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0924271620301271
Volltext
Verfasserangaben:Hao Li, Benjamin Herfort, Wei Huang, Mohammed Zia, Alexander Zipf

MARC

LEADER 00000caa a2200000 c 4500
001 1727815505
003 DE-627
005 20220818183814.0
007 cr uuu---uuuuu
008 200826s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.isprsjprs.2020.05.007  |2 doi 
035 |a (DE-627)1727815505 
035 |a (DE-599)KXP1727815505 
035 |a (OCoLC)1341357769 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Li, Hao  |e VerfasserIn  |0 (DE-588)1197649670  |0 (DE-627)1679340883  |4 aut 
245 1 0 |a Exploration of OpenStreetMap missing built-up areas using twitter hierarchical clustering and deep learning in Mozambique  |c Hao Li, Benjamin Herfort, Wei Huang, Mohammed Zia, Alexander Zipf 
264 1 |c 07 June 2020 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 26.08.2020 
520 |a Accurate and detailed geographical information digitizing human activity patterns plays an essential role in response to natural disasters. Volunteered geographical information, in particular OpenStreetMap (OSM), shows great potential in providing the knowledge of human settlements to support humanitarian aid, while the availability and quality of OSM remains a major concern. The majority of existing works in assessing OSM data quality focus on either extrinsic or intrinsic analysis, which is insufficient to fulfill the humanitarian mapping scenario to a certain degree. This paper aims to explore OSM missing built-up areas from an integrative perspective of social sensing and remote sensing. First, applying hierarchical DBSCAN clustering algorithm, the clusters of geo-tagged tweets are generated as proxies of human active regions. Then a deep learning based model fine-tuned on existing OSM data is proposed to further map the missing built-up areas. Hit by Cyclone Idai and Kenneth in 2019, the Republic of Mozambique is selected as the study area to evaluate the proposed method at a national scale. As a result, 13 OSM missing built-up areas are identified and mapped with an over 90% overall accuracy, being competitive compared to state-of-the-art products, which confirms the effectiveness of the proposed method. 
650 4 |a Data quality 
650 4 |a Deep learning 
650 4 |a Hierarchical DBSCAN 
650 4 |a Humanitarian mapping 
650 4 |a OpenStreetMap 
650 4 |a Twitter 
650 4 |a Volunteered geographical information 
700 1 |a Herfort, Benjamin  |d 1991-  |e VerfasserIn  |0 (DE-588)1066402140  |0 (DE-627)817493832  |0 (DE-576)425832473  |4 aut 
700 1 |a Huang, Wei  |e VerfasserIn  |4 aut 
700 1 |a Zia, Mohammed  |e VerfasserIn  |0 (DE-588)1199406155  |0 (DE-627)1681704110  |4 aut 
700 1 |a Zipf, Alexander  |d 1971-  |e VerfasserIn  |0 (DE-588)123246369  |0 (DE-627)082437076  |0 (DE-576)175641056  |4 aut 
773 0 8 |i Enthalten in  |a International Society for Photogrammetry and Remote Sensing  |t ISPRS journal of photogrammetry and remote sensing  |d Amsterdam [u.a.] : Elsevier, 1989  |g 166(2020), Seite 41-51  |h Online-Ressource  |w (DE-627)320504557  |w (DE-600)2012663-3  |w (DE-576)096806567  |x 0924-2716  |7 nnas 
773 1 8 |g volume:166  |g year:2020  |g pages:41-51  |g extent:11  |a Exploration of OpenStreetMap missing built-up areas using twitter hierarchical clustering and deep learning in Mozambique 
856 4 0 |u https://doi.org/10.1016/j.isprsjprs.2020.05.007  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0924271620301271  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200826 
993 |a Article 
994 |a 2020 
998 |g 123246369  |a Zipf, Alexander  |m 123246369:Zipf, Alexander  |d 120000  |d 120700  |e 120000PZ123246369  |e 120700PZ123246369  |k 0/120000/  |k 1/120000/120700/  |p 5  |y j 
998 |g 1199406155  |a Zia, Mohammed  |m 1199406155:Zia, Mohammed  |d 120000  |d 120700  |e 120000PZ1199406155  |e 120700PZ1199406155  |k 0/120000/  |k 1/120000/120700/  |p 4 
998 |g 1066402140  |a Herfort, Benjamin  |m 1066402140:Herfort, Benjamin  |d 120000  |d 120700  |e 120000PH1066402140  |e 120700PH1066402140  |k 0/120000/  |k 1/120000/120700/  |p 2 
998 |g 1197649670  |a Li, Hao  |m 1197649670:Li, Hao  |d 120000  |d 120700  |e 120000PL1197649670  |e 120700PL1197649670  |k 0/120000/  |k 1/120000/120700/  |p 1  |x j 
999 |a KXP-PPN1727815505  |e 3742973576 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"name":{"displayForm":["Hao Li, Benjamin Herfort, Wei Huang, Mohammed Zia, Alexander Zipf"]},"note":["Gesehen am 26.08.2020"],"person":[{"family":"Li","role":"aut","display":"Li, Hao","given":"Hao"},{"display":"Herfort, Benjamin","given":"Benjamin","role":"aut","family":"Herfort"},{"display":"Huang, Wei","given":"Wei","family":"Huang","role":"aut"},{"family":"Zia","role":"aut","given":"Mohammed","display":"Zia, Mohammed"},{"role":"aut","family":"Zipf","display":"Zipf, Alexander","given":"Alexander"}],"recId":"1727815505","id":{"eki":["1727815505"],"doi":["10.1016/j.isprsjprs.2020.05.007"]},"physDesc":[{"extent":"11 S."}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Exploration of OpenStreetMap missing built-up areas using twitter hierarchical clustering and deep learning in Mozambique","title_sort":"Exploration of OpenStreetMap missing built-up areas using twitter hierarchical clustering and deep learning in Mozambique"}],"origin":[{"dateIssuedDisp":"07 June 2020","dateIssuedKey":"2020"}],"relHost":[{"recId":"320504557","title":[{"title_sort":"ISPRS journal of photogrammetry and remote sensing","subtitle":"official publication of the International Society for Photogrammetry and Remote Sensing (ISPRS)","title":"ISPRS journal of photogrammetry and remote sensing"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["320504557"],"issn":["0924-2716"],"zdb":["2012663-3"]},"origin":[{"dateIssuedKey":"1989","publisherPlace":"Amsterdam [u.a.]","publisher":"Elsevier","dateIssuedDisp":"1989-"}],"language":["eng"],"part":{"text":"166(2020), Seite 41-51","extent":"11","pages":"41-51","year":"2020","volume":"166"},"note":["Gesehen am 03.05.07"],"pubHistory":["44.1989/90 - 66.2011; Vol. 67.2012 -"],"corporate":[{"role":"aut","display":"International Society for Photogrammetry and Remote Sensing"}],"disp":"International Society for Photogrammetry and Remote SensingISPRS journal of photogrammetry and remote sensing","type":{"bibl":"periodical","media":"Online-Ressource"},"titleAlt":[{"title":"Journal of photogrammetry and remote sensing"}]}]} 
SRT |a LIHAOHERFOEXPLORATIO0720