The Calderón problem for a space-time fractional parabolic equation

In this article we study an inverse problem for the space-time fractional parabolic operator (partial derivative(t) -Delta)(s) +Q with 0 < s < 1 in any space dimension. We uniquely determine the unknown bounded potential Q from infinitely many exterior Dirichlet-to-Neumann type measurements. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lai, Ru-Yu (VerfasserIn) , Lin, Yi-Hsuan (VerfasserIn) , Rüland, Angkana (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: June 4, 2020
In: SIAM journal on mathematical analysis
Year: 2020, Jahrgang: 52, Heft: 3, Pages: 2655-2688
ISSN:1095-7154
DOI:10.1137/19M1270288
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/19M1270288
Volltext
Verfasserangaben:Ru-Yu Lai, Yi-Hsuan Lin, and Angkana Rüland

MARC

LEADER 00000caa a2200000 c 4500
001 172790687X
003 DE-627
005 20220818184650.0
007 cr uuu---uuuuu
008 200827s2020 xx |||||o 00| ||eng c
024 7 |a 10.1137/19M1270288  |2 doi 
035 |a (DE-627)172790687X 
035 |a (DE-599)KXP172790687X 
035 |a (OCoLC)1341357966 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Lai, Ru-Yu  |e VerfasserIn  |0 (DE-588)1216660417  |0 (DE-627)1727910753  |4 aut 
245 1 4 |a The Calderón problem for a space-time fractional parabolic equation  |c Ru-Yu Lai, Yi-Hsuan Lin, and Angkana Rüland 
264 1 |c June 4, 2020 
300 |a 34 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.08.2020 
520 |a In this article we study an inverse problem for the space-time fractional parabolic operator (partial derivative(t) -Delta)(s) +Q with 0 < s < 1 in any space dimension. We uniquely determine the unknown bounded potential Q from infinitely many exterior Dirichlet-to-Neumann type measurements. This relies on Runge approximation and the dual global weak unique continuation properties of the equation under consideration. In discussing weak unique continuation of our operator, a main feature of our argument relies on a new Carleman estimate for the associated degenerate parabolic Caffarelli- Silvestre extension. Furthermore, we also discuss constructive single measurement results based on the approximation and unique continuation properties of the equation. 
650 4 |a dynamics 
650 4 |a anomalous diffusion 
650 4 |a approximation 
650 4 |a Carleman estimate 
650 4 |a coefficients 
650 4 |a degenerate parabolic equations 
650 4 |a fractional parabolic Calderon problem 
650 4 |a global uniqueness 
650 4 |a guide 
650 4 |a inverse problem 
650 4 |a monotonicity 
650 4 |a nonlocal 
650 4 |a regularity 
650 4 |a Runge approximation 
650 4 |a unique continuation 
650 4 |a unique continuation property 
700 1 |a Lin, Yi-Hsuan  |e VerfasserIn  |0 (DE-588)121666059X  |0 (DE-627)1727911415  |4 aut 
700 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
773 0 8 |i Enthalten in  |a Society for Industrial and Applied Mathematics  |t SIAM journal on mathematical analysis  |d Philadelphia, Pa. : SIAM, 1970  |g 52(2020), 3, Seite 2655-2688  |h Online-Ressource  |w (DE-627)266885411  |w (DE-600)1468406-8  |w (DE-576)078589983  |x 1095-7154  |7 nnas 
773 1 8 |g volume:52  |g year:2020  |g number:3  |g pages:2655-2688  |g extent:34  |a The Calderón problem for a space-time fractional parabolic equation 
856 4 0 |u https://doi.org/10.1137/19M1270288  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200827 
993 |a Article 
994 |a 2020 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PR1051987679  |e 110200PR1051987679  |e 110000PR1051987679  |e 110400PR1051987679  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 3  |y j 
999 |a KXP-PPN172790687X  |e 3743187817 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 27.08.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"172790687X","title":[{"title_sort":"Calderón problem for a space-time fractional parabolic equation","title":"The Calderón problem for a space-time fractional parabolic equation"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Lai, Ru-Yu","given":"Ru-Yu","family":"Lai"},{"roleDisplay":"VerfasserIn","display":"Lin, Yi-Hsuan","role":"aut","family":"Lin","given":"Yi-Hsuan"},{"roleDisplay":"VerfasserIn","display":"Rüland, Angkana","role":"aut","family":"Rüland","given":"Angkana"}],"physDesc":[{"extent":"34 S."}],"relHost":[{"titleAlt":[{"title":"Journal on mathematical analysis"}],"part":{"text":"52(2020), 3, Seite 2655-2688","volume":"52","extent":"34","year":"2020","pages":"2655-2688","issue":"3"},"pubHistory":["1.1970 -"],"recId":"266885411","language":["eng"],"corporate":[{"role":"aut","display":"Society for Industrial and Applied Mathematics","roleDisplay":"VerfasserIn"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Society for Industrial and Applied MathematicsSIAM journal on mathematical analysis","note":["Gesehen am 28.06.2021"],"title":[{"title":"SIAM journal on mathematical analysis","title_sort":"SIAM journal on mathematical analysis"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1095-7154"],"zdb":["1468406-8"],"eki":["266885411"]},"origin":[{"publisherPlace":"Philadelphia, Pa.","publisher":"SIAM","dateIssuedKey":"1970","dateIssuedDisp":"1970-"}],"name":{"displayForm":["Society for Industrial and Applied Mathematics"]}}],"origin":[{"dateIssuedDisp":"June 4, 2020","dateIssuedKey":"2020"}],"id":{"eki":["172790687X"],"doi":["10.1137/19M1270288"]},"name":{"displayForm":["Ru-Yu Lai, Yi-Hsuan Lin, and Angkana Rüland"]}} 
SRT |a LAIRUYULINCALDERONPR4202