Past and present of computer-assisted dermoscopic diagnosis: performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions

Background - Convolutional neural networks (CNNs) have shown a dermatologist-level performance in the classification of skin lesions. We aimed to deliver a head-to-head comparison of a conventional image analyser (CIA), which depends on segmentation and weighting of handcrafted features, to a CNN tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kommoss, Katharina (VerfasserIn) , Winkler, Julia K. (VerfasserIn) , Müller-Christmann, Christine (VerfasserIn) , Niedermair, Felicitas (VerfasserIn) , Toberer, Ferdinand (VerfasserIn) , Buhl, Timo (VerfasserIn) , Enk, Alexander (VerfasserIn) , Blum, Andreas (VerfasserIn) , Rosenberger, Albert (VerfasserIn) , Hänßle, Holger (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 June 2020
In: European journal of cancer
Year: 2020, Jahrgang: 135, Pages: 39-46
ISSN:1879-0852
DOI:10.1016/j.ejca.2020.04.043
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.ejca.2020.04.043
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0959804920302483
Volltext
Verfasserangaben:Katharina Sies, Julia K. Winkler, Christine Fink, Felicitas Bardehle, Ferdinand Toberer, Timo Buhl, Alexander Enk, Andreas Blum, Albert Rosenberger, Holger A. Haenssle

MARC

LEADER 00000caa a2200000 c 4500
001 172791290X
003 DE-627
005 20240406193249.0
007 cr uuu---uuuuu
008 200827s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejca.2020.04.043  |2 doi 
035 |a (DE-627)172791290X 
035 |a (DE-599)KXP172791290X 
035 |a (OCoLC)1341357516 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Kommoss, Katharina  |e VerfasserIn  |0 (DE-588)1216661227  |0 (DE-627)1727913124  |4 aut 
245 1 0 |a Past and present of computer-assisted dermoscopic diagnosis  |b performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions  |c Katharina Sies, Julia K. Winkler, Christine Fink, Felicitas Bardehle, Ferdinand Toberer, Timo Buhl, Alexander Enk, Andreas Blum, Albert Rosenberger, Holger A. Haenssle 
264 1 |c 10 June 2020 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.08.2020 
520 |a Background - Convolutional neural networks (CNNs) have shown a dermatologist-level performance in the classification of skin lesions. We aimed to deliver a head-to-head comparison of a conventional image analyser (CIA), which depends on segmentation and weighting of handcrafted features, to a CNN trained by deep learning. - Methods - Cross-sectional study using a real-world, prospectively acquired, dermoscopic dataset of 1981 skin lesions to compare the diagnostic performance of a market-approved CNN (Moleanalyzer-Pro™, developed in 2018) to a CIA (Moleanalyzer-3™/Dynamole™; developed in 2004, all FotoFinder Systems Inc, Germany). As a reference standard, we used histopathological diagnoses (n = 785) or, in non-excised benign lesions (n = 1196), expert consensus plus an uneventful follow-up by sequential digital dermoscopy for at least 2 years. - Results - A total of 281 malignant lesions and 1700 benign lesions from 435 patients (62.2% male, mean age: 52 years) were prospectively imaged. The CNN showed a sensitivity of 77.6% (95% confidence interval [CI]: [72.4%-82.1%]), specificity of 95.3% (95% CI: [94.2%-96.2%]), and receiver operating characteristic (ROC)-area under the curve (AUC) of 0.945 (95% CI: [0.930-0.961]). In contrast, the CIA achieved a sensitivity of 53.4% (95% CI: [47.5%-59.1%]), specificity of 86.6% (95% CI: [84.9%-88.1%]) and ROC-AUC of 0.738 (95% CI: [0.701-0.774]). The data set included melanomas originally diagnosed by dynamic changes during sequential digital dermoscopy (52 of 201, 20.6%), which reduced the sensitivities of both classifiers. Pairwise comparisons of sensitivities, specificities, and ROC-AUCs indicated a clear outperformance by the CNN (all p < 0.001). - Conclusions - The superior diagnostic performance of the CNN argues against a continued application of former CIAs as an aide to physicians’ clinical management decisions. 
650 4 |a Automated melanoma detection 
650 4 |a Computer-assisted diagnosis 
650 4 |a Convolutional neural network 
650 4 |a Deep learning 
650 4 |a Dermoscopy 
650 4 |a Skin cancer 
650 4 |a Skin lesions 
700 1 |a Winkler, Julia K.  |d 1987-  |e VerfasserIn  |0 (DE-588)1038218993  |0 (DE-627)756780721  |0 (DE-576)392196514  |4 aut 
700 1 |a Müller-Christmann, Christine  |d 1983-  |e VerfasserIn  |0 (DE-588)143738127  |0 (DE-627)654330387  |0 (DE-576)338647651  |4 aut 
700 1 |a Niedermair, Felicitas  |d 1992-  |e VerfasserIn  |0 (DE-588)1208730061  |0 (DE-627)1695350405  |4 aut 
700 1 |a Toberer, Ferdinand  |d 1981-  |e VerfasserIn  |0 (DE-588)102155832X  |0 (DE-627)715821962  |0 (DE-576)362852367  |4 aut 
700 1 |a Buhl, Timo  |e VerfasserIn  |4 aut 
700 1 |a Enk, Alexander  |d 1963-  |e VerfasserIn  |0 (DE-588)1032757140  |0 (DE-627)739272535  |0 (DE-576)166173517  |4 aut 
700 1 |a Blum, Andreas  |e VerfasserIn  |4 aut 
700 1 |a Rosenberger, Albert  |e VerfasserIn  |4 aut 
700 1 |a Hänßle, Holger  |e VerfasserIn  |0 (DE-588)1074971531  |0 (DE-627)832791733  |0 (DE-576)443174598  |4 aut 
773 0 8 |i Enthalten in  |t European journal of cancer  |d Amsterdam [u.a.] : Elsevier, 1992  |g 135(2020), Seite 39-46  |w (DE-627)266883400  |w (DE-600)1468190-0  |w (DE-576)090954173  |x 1879-0852  |7 nnas  |a Past and present of computer-assisted dermoscopic diagnosis performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions 
773 1 8 |g volume:135  |g year:2020  |g pages:39-46  |g extent:8  |a Past and present of computer-assisted dermoscopic diagnosis performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions 
856 4 0 |u https://doi.org/10.1016/j.ejca.2020.04.043  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0959804920302483  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200827 
993 |a Article 
994 |a 2020 
998 |g 1074971531  |a Hänßle, Holger  |m 1074971531:Hänßle, Holger  |d 910000  |d 911300  |e 910000PH1074971531  |e 911300PH1074971531  |k 0/910000/  |k 1/910000/911300/  |p 10  |y j 
998 |g 1032757140  |a Enk, Alexander  |m 1032757140:Enk, Alexander  |d 910000  |d 911300  |e 910000PE1032757140  |e 911300PE1032757140  |k 0/910000/  |k 1/910000/911300/  |p 7 
998 |g 102155832X  |a Toberer, Ferdinand  |m 102155832X:Toberer, Ferdinand  |d 910000  |d 911300  |e 910000PT102155832X  |e 911300PT102155832X  |k 0/910000/  |k 1/910000/911300/  |p 5 
998 |g 1208730061  |a Niedermair, Felicitas  |m 1208730061:Niedermair, Felicitas  |d 910000  |d 911300  |e 910000PN1208730061  |e 911300PN1208730061  |k 0/910000/  |k 1/910000/911300/  |p 4 
998 |g 143738127  |a Müller-Christmann, Christine  |m 143738127:Müller-Christmann, Christine  |d 910000  |d 911300  |e 910000PM143738127  |e 911300PM143738127  |k 0/910000/  |k 1/910000/911300/  |p 3 
998 |g 1038218993  |a Winkler, Julia K.  |m 1038218993:Winkler, Julia K.  |d 910000  |d 911300  |e 910000PW1038218993  |e 911300PW1038218993  |k 0/910000/  |k 1/910000/911300/  |p 2 
998 |g 1216661227  |a Kommoss, Katharina  |m 1216661227:Kommoss, Katharina  |d 910000  |d 911300  |e 910000PK1216661227  |e 911300PK1216661227  |k 0/910000/  |k 1/910000/911300/  |p 1  |x j 
999 |a KXP-PPN172791290X  |e 3743204681 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"10 June 2020","dateIssuedKey":"2020"}],"id":{"eki":["172791290X"],"doi":["10.1016/j.ejca.2020.04.043"]},"recId":"172791290X","person":[{"family":"Kommoss","display":"Kommoss, Katharina","role":"aut","given":"Katharina"},{"role":"aut","family":"Winkler","display":"Winkler, Julia K.","given":"Julia K."},{"role":"aut","display":"Müller-Christmann, Christine","family":"Müller-Christmann","given":"Christine"},{"given":"Felicitas","display":"Niedermair, Felicitas","family":"Niedermair","role":"aut"},{"role":"aut","family":"Toberer","display":"Toberer, Ferdinand","given":"Ferdinand"},{"given":"Timo","role":"aut","family":"Buhl","display":"Buhl, Timo"},{"given":"Alexander","role":"aut","display":"Enk, Alexander","family":"Enk"},{"given":"Andreas","display":"Blum, Andreas","family":"Blum","role":"aut"},{"role":"aut","display":"Rosenberger, Albert","family":"Rosenberger","given":"Albert"},{"given":"Holger","role":"aut","display":"Hänßle, Holger","family":"Hänßle"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"relHost":[{"recId":"266883400","type":{"bibl":"periodical","media":"Online-Ressource"},"titleAlt":[{"title":"EJC online"}],"corporate":[{"role":"isb","display":"European Organization for Research on Treatment of Cancer"},{"display":"European Association for Cancer Research","role":"isb"},{"role":"isb","display":"European School of Oncology"}],"pubHistory":["28.1992 -"],"part":{"text":"135(2020), Seite 39-46","year":"2020","extent":"8","pages":"39-46","volume":"135"},"disp":"Past and present of computer-assisted dermoscopic diagnosis performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesionsEuropean journal of cancer","id":{"issn":["1879-0852"],"zdb":["1468190-0"],"eki":["266883400"]},"origin":[{"publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1992","dateIssuedDisp":"1992-","publisher":"Elsevier ; Pergamon Press"}],"note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"language":["eng"],"title":[{"title":"European journal of cancer","title_sort":"European journal of cancer"}]}],"physDesc":[{"extent":"8 S."}],"title":[{"title":"Past and present of computer-assisted dermoscopic diagnosis","subtitle":"performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions","title_sort":"Past and present of computer-assisted dermoscopic diagnosis"}],"language":["eng"],"note":["Gesehen am 27.08.2020"],"name":{"displayForm":["Katharina Sies, Julia K. Winkler, Christine Fink, Felicitas Bardehle, Ferdinand Toberer, Timo Buhl, Alexander Enk, Andreas Blum, Albert Rosenberger, Holger A. Haenssle"]}} 
SRT |a KOMMOSSKATPASTANDPRE1020