Past and present of computer-assisted dermoscopic diagnosis: performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions
Background - Convolutional neural networks (CNNs) have shown a dermatologist-level performance in the classification of skin lesions. We aimed to deliver a head-to-head comparison of a conventional image analyser (CIA), which depends on segmentation and weighting of handcrafted features, to a CNN tr...
Gespeichert in:
| Hauptverfasser: | , , , , , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
10 June 2020
|
| In: |
European journal of cancer
Year: 2020, Jahrgang: 135, Pages: 39-46 |
| ISSN: | 1879-0852 |
| DOI: | 10.1016/j.ejca.2020.04.043 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.ejca.2020.04.043 Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0959804920302483 |
| Verfasserangaben: | Katharina Sies, Julia K. Winkler, Christine Fink, Felicitas Bardehle, Ferdinand Toberer, Timo Buhl, Alexander Enk, Andreas Blum, Albert Rosenberger, Holger A. Haenssle |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 172791290X | ||
| 003 | DE-627 | ||
| 005 | 20240406193249.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200827s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.ejca.2020.04.043 |2 doi | |
| 035 | |a (DE-627)172791290X | ||
| 035 | |a (DE-599)KXP172791290X | ||
| 035 | |a (OCoLC)1341357516 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Kommoss, Katharina |e VerfasserIn |0 (DE-588)1216661227 |0 (DE-627)1727913124 |4 aut | |
| 245 | 1 | 0 | |a Past and present of computer-assisted dermoscopic diagnosis |b performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions |c Katharina Sies, Julia K. Winkler, Christine Fink, Felicitas Bardehle, Ferdinand Toberer, Timo Buhl, Alexander Enk, Andreas Blum, Albert Rosenberger, Holger A. Haenssle |
| 264 | 1 | |c 10 June 2020 | |
| 300 | |a 8 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.08.2020 | ||
| 520 | |a Background - Convolutional neural networks (CNNs) have shown a dermatologist-level performance in the classification of skin lesions. We aimed to deliver a head-to-head comparison of a conventional image analyser (CIA), which depends on segmentation and weighting of handcrafted features, to a CNN trained by deep learning. - Methods - Cross-sectional study using a real-world, prospectively acquired, dermoscopic dataset of 1981 skin lesions to compare the diagnostic performance of a market-approved CNN (Moleanalyzer-Pro™, developed in 2018) to a CIA (Moleanalyzer-3™/Dynamole™; developed in 2004, all FotoFinder Systems Inc, Germany). As a reference standard, we used histopathological diagnoses (n = 785) or, in non-excised benign lesions (n = 1196), expert consensus plus an uneventful follow-up by sequential digital dermoscopy for at least 2 years. - Results - A total of 281 malignant lesions and 1700 benign lesions from 435 patients (62.2% male, mean age: 52 years) were prospectively imaged. The CNN showed a sensitivity of 77.6% (95% confidence interval [CI]: [72.4%-82.1%]), specificity of 95.3% (95% CI: [94.2%-96.2%]), and receiver operating characteristic (ROC)-area under the curve (AUC) of 0.945 (95% CI: [0.930-0.961]). In contrast, the CIA achieved a sensitivity of 53.4% (95% CI: [47.5%-59.1%]), specificity of 86.6% (95% CI: [84.9%-88.1%]) and ROC-AUC of 0.738 (95% CI: [0.701-0.774]). The data set included melanomas originally diagnosed by dynamic changes during sequential digital dermoscopy (52 of 201, 20.6%), which reduced the sensitivities of both classifiers. Pairwise comparisons of sensitivities, specificities, and ROC-AUCs indicated a clear outperformance by the CNN (all p < 0.001). - Conclusions - The superior diagnostic performance of the CNN argues against a continued application of former CIAs as an aide to physicians’ clinical management decisions. | ||
| 650 | 4 | |a Automated melanoma detection | |
| 650 | 4 | |a Computer-assisted diagnosis | |
| 650 | 4 | |a Convolutional neural network | |
| 650 | 4 | |a Deep learning | |
| 650 | 4 | |a Dermoscopy | |
| 650 | 4 | |a Skin cancer | |
| 650 | 4 | |a Skin lesions | |
| 700 | 1 | |a Winkler, Julia K. |d 1987- |e VerfasserIn |0 (DE-588)1038218993 |0 (DE-627)756780721 |0 (DE-576)392196514 |4 aut | |
| 700 | 1 | |a Müller-Christmann, Christine |d 1983- |e VerfasserIn |0 (DE-588)143738127 |0 (DE-627)654330387 |0 (DE-576)338647651 |4 aut | |
| 700 | 1 | |a Niedermair, Felicitas |d 1992- |e VerfasserIn |0 (DE-588)1208730061 |0 (DE-627)1695350405 |4 aut | |
| 700 | 1 | |a Toberer, Ferdinand |d 1981- |e VerfasserIn |0 (DE-588)102155832X |0 (DE-627)715821962 |0 (DE-576)362852367 |4 aut | |
| 700 | 1 | |a Buhl, Timo |e VerfasserIn |4 aut | |
| 700 | 1 | |a Enk, Alexander |d 1963- |e VerfasserIn |0 (DE-588)1032757140 |0 (DE-627)739272535 |0 (DE-576)166173517 |4 aut | |
| 700 | 1 | |a Blum, Andreas |e VerfasserIn |4 aut | |
| 700 | 1 | |a Rosenberger, Albert |e VerfasserIn |4 aut | |
| 700 | 1 | |a Hänßle, Holger |e VerfasserIn |0 (DE-588)1074971531 |0 (DE-627)832791733 |0 (DE-576)443174598 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t European journal of cancer |d Amsterdam [u.a.] : Elsevier, 1992 |g 135(2020), Seite 39-46 |w (DE-627)266883400 |w (DE-600)1468190-0 |w (DE-576)090954173 |x 1879-0852 |7 nnas |a Past and present of computer-assisted dermoscopic diagnosis performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions |
| 773 | 1 | 8 | |g volume:135 |g year:2020 |g pages:39-46 |g extent:8 |a Past and present of computer-assisted dermoscopic diagnosis performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.ejca.2020.04.043 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0959804920302483 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200827 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1074971531 |a Hänßle, Holger |m 1074971531:Hänßle, Holger |d 910000 |d 911300 |e 910000PH1074971531 |e 911300PH1074971531 |k 0/910000/ |k 1/910000/911300/ |p 10 |y j | ||
| 998 | |g 1032757140 |a Enk, Alexander |m 1032757140:Enk, Alexander |d 910000 |d 911300 |e 910000PE1032757140 |e 911300PE1032757140 |k 0/910000/ |k 1/910000/911300/ |p 7 | ||
| 998 | |g 102155832X |a Toberer, Ferdinand |m 102155832X:Toberer, Ferdinand |d 910000 |d 911300 |e 910000PT102155832X |e 911300PT102155832X |k 0/910000/ |k 1/910000/911300/ |p 5 | ||
| 998 | |g 1208730061 |a Niedermair, Felicitas |m 1208730061:Niedermair, Felicitas |d 910000 |d 911300 |e 910000PN1208730061 |e 911300PN1208730061 |k 0/910000/ |k 1/910000/911300/ |p 4 | ||
| 998 | |g 143738127 |a Müller-Christmann, Christine |m 143738127:Müller-Christmann, Christine |d 910000 |d 911300 |e 910000PM143738127 |e 911300PM143738127 |k 0/910000/ |k 1/910000/911300/ |p 3 | ||
| 998 | |g 1038218993 |a Winkler, Julia K. |m 1038218993:Winkler, Julia K. |d 910000 |d 911300 |e 910000PW1038218993 |e 911300PW1038218993 |k 0/910000/ |k 1/910000/911300/ |p 2 | ||
| 998 | |g 1216661227 |a Kommoss, Katharina |m 1216661227:Kommoss, Katharina |d 910000 |d 911300 |e 910000PK1216661227 |e 911300PK1216661227 |k 0/910000/ |k 1/910000/911300/ |p 1 |x j | ||
| 999 | |a KXP-PPN172791290X |e 3743204681 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"origin":[{"dateIssuedDisp":"10 June 2020","dateIssuedKey":"2020"}],"id":{"eki":["172791290X"],"doi":["10.1016/j.ejca.2020.04.043"]},"recId":"172791290X","person":[{"family":"Kommoss","display":"Kommoss, Katharina","role":"aut","given":"Katharina"},{"role":"aut","family":"Winkler","display":"Winkler, Julia K.","given":"Julia K."},{"role":"aut","display":"Müller-Christmann, Christine","family":"Müller-Christmann","given":"Christine"},{"given":"Felicitas","display":"Niedermair, Felicitas","family":"Niedermair","role":"aut"},{"role":"aut","family":"Toberer","display":"Toberer, Ferdinand","given":"Ferdinand"},{"given":"Timo","role":"aut","family":"Buhl","display":"Buhl, Timo"},{"given":"Alexander","role":"aut","display":"Enk, Alexander","family":"Enk"},{"given":"Andreas","display":"Blum, Andreas","family":"Blum","role":"aut"},{"role":"aut","display":"Rosenberger, Albert","family":"Rosenberger","given":"Albert"},{"given":"Holger","role":"aut","display":"Hänßle, Holger","family":"Hänßle"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"relHost":[{"recId":"266883400","type":{"bibl":"periodical","media":"Online-Ressource"},"titleAlt":[{"title":"EJC online"}],"corporate":[{"role":"isb","display":"European Organization for Research on Treatment of Cancer"},{"display":"European Association for Cancer Research","role":"isb"},{"role":"isb","display":"European School of Oncology"}],"pubHistory":["28.1992 -"],"part":{"text":"135(2020), Seite 39-46","year":"2020","extent":"8","pages":"39-46","volume":"135"},"disp":"Past and present of computer-assisted dermoscopic diagnosis performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesionsEuropean journal of cancer","id":{"issn":["1879-0852"],"zdb":["1468190-0"],"eki":["266883400"]},"origin":[{"publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1992","dateIssuedDisp":"1992-","publisher":"Elsevier ; Pergamon Press"}],"note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"language":["eng"],"title":[{"title":"European journal of cancer","title_sort":"European journal of cancer"}]}],"physDesc":[{"extent":"8 S."}],"title":[{"title":"Past and present of computer-assisted dermoscopic diagnosis","subtitle":"performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions","title_sort":"Past and present of computer-assisted dermoscopic diagnosis"}],"language":["eng"],"note":["Gesehen am 27.08.2020"],"name":{"displayForm":["Katharina Sies, Julia K. Winkler, Christine Fink, Felicitas Bardehle, Ferdinand Toberer, Timo Buhl, Alexander Enk, Andreas Blum, Albert Rosenberger, Holger A. Haenssle"]}} | ||
| SRT | |a KOMMOSSKATPASTANDPRE1020 | ||