Spatio-temporal data fusion for very large remote sensing datasets

Developing global maps of carbon dioxide (CO2) mole fraction (in units of parts per million) near the Earth’s surface can help identify locations where major amounts of CO2 are entering and exiting the atmosphere, thus providing valuable insights into the carbon cycle and mitigating the greenhouse e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nguyen, Hai (VerfasserIn) , Katzfuß, Matthias (VerfasserIn) , Cressie, Noel (VerfasserIn) , Braverman, Amy (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 May 2014
In: Technometrics
Year: 2014, Jahrgang: 56, Heft: 2, Pages: 174-185
ISSN:1537-2723
DOI:10.1080/00401706.2013.831774
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1080/00401706.2013.831774
Volltext
Verfasserangaben:Hai Nguyen, Matthias Katzfuss, Noel Cressie & Amy Braverman

MARC

LEADER 00000caa a2200000 c 4500
001 172863444X
003 DE-627
005 20220818190458.0
007 cr uuu---uuuuu
008 200902s2014 xx |||||o 00| ||eng c
024 7 |a 10.1080/00401706.2013.831774  |2 doi 
035 |a (DE-627)172863444X 
035 |a (DE-599)KXP172863444X 
035 |a (OCoLC)1341358387 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Nguyen, Hai  |e VerfasserIn  |0 (DE-588)1216972303  |0 (DE-627)1728632269  |4 aut 
245 1 0 |a Spatio-temporal data fusion for very large remote sensing datasets  |c Hai Nguyen, Matthias Katzfuss, Noel Cressie & Amy Braverman 
264 1 |c 16 May 2014 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 02.09.2020 
520 |a Developing global maps of carbon dioxide (CO2) mole fraction (in units of parts per million) near the Earth’s surface can help identify locations where major amounts of CO2 are entering and exiting the atmosphere, thus providing valuable insights into the carbon cycle and mitigating the greenhouse effect of atmospheric CO2. Existing satellite remote sensing data do not provide measurements of the CO2 mole fraction near the surface. Japan’s Greenhouse gases Observing SATellite (GOSAT) is sensitive to average CO2 over the entire column, and NASA’s Atmospheric InfraRed Sounder (AIRS) is sensitive to CO2 in the middle troposphere. One might expect that lower-atmospheric CO2 could be inferred by differencing GOSAT column-average and AIRS mid-tropospheric data. However, the two instruments have different footprints, measurement-error characteristics, and data coverages. In addition, the spatio-temporal domains are large, and the AIRS dataset is massive. In this article, we describe a spatio-temporal data-fusion (STDF) methodology based on reduced-dimensional Kalman smoothing. Our STDF is able to combine the complementary GOSAT and AIRS datasets to optimally estimate lower-atmospheric CO2 mole fraction over the whole globe. Further, it is designed for massive remote sensing datasets and accounts for differences in instrument footprint, measurement-error characteristics, and data coverages. This article has supplementary material online. 
650 4 |a EM algorithm 
650 4 |a Fixed rank smoothing 
650 4 |a Kalman filter 
650 4 |a Multivariate geostatistics 
650 4 |a Spatial random effects model 
700 1 |a Katzfuß, Matthias  |e VerfasserIn  |0 (DE-588)1047895234  |0 (DE-627)779432134  |0 (DE-576)40172462X  |4 aut 
700 1 |a Cressie, Noel  |e VerfasserIn  |4 aut 
700 1 |a Braverman, Amy  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Technometrics  |d Abingdon : Taylor & Francis, 1959  |g 56(2014), 2, Seite 174-185  |h Online-Ressource  |w (DE-627)265779839  |w (DE-600)1465861-6  |w (DE-576)103815678  |x 1537-2723  |7 nnas  |a Spatio-temporal data fusion for very large remote sensing datasets 
773 1 8 |g volume:56  |g year:2014  |g number:2  |g pages:174-185  |g extent:12  |a Spatio-temporal data fusion for very large remote sensing datasets 
856 4 0 |u https://doi.org/10.1080/00401706.2013.831774  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200902 
993 |a Article 
994 |a 2014 
998 |g 1047895234  |a Katzfuß, Matthias  |m 1047895234:Katzfuß, Matthias  |p 2 
999 |a KXP-PPN172863444X  |e 3746090407 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"display":"Nguyen, Hai","roleDisplay":"VerfasserIn","role":"aut","family":"Nguyen","given":"Hai"},{"roleDisplay":"VerfasserIn","display":"Katzfuß, Matthias","role":"aut","family":"Katzfuß","given":"Matthias"},{"roleDisplay":"VerfasserIn","display":"Cressie, Noel","role":"aut","family":"Cressie","given":"Noel"},{"display":"Braverman, Amy","roleDisplay":"VerfasserIn","role":"aut","family":"Braverman","given":"Amy"}],"title":[{"title_sort":"Spatio-temporal data fusion for very large remote sensing datasets","title":"Spatio-temporal data fusion for very large remote sensing datasets"}],"language":["eng"],"recId":"172863444X","note":["Gesehen am 02.09.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"name":{"displayForm":["Hai Nguyen, Matthias Katzfuss, Noel Cressie & Amy Braverman"]},"id":{"eki":["172863444X"],"doi":["10.1080/00401706.2013.831774"]},"origin":[{"dateIssuedDisp":"16 May 2014","dateIssuedKey":"2014"}],"relHost":[{"part":{"year":"2014","issue":"2","pages":"174-185","text":"56(2014), 2, Seite 174-185","volume":"56","extent":"12"},"pubHistory":["1.1959 -"],"language":["eng"],"corporate":[{"role":"isb","display":"American Statistical Association","roleDisplay":"Herausgebendes Organ"},{"role":"isb","display":"American Society for Quality Control","roleDisplay":"Herausgebendes Organ"}],"recId":"265779839","note":["Gesehen am 30.08.22"],"disp":"Spatio-temporal data fusion for very large remote sensing datasetsTechnometrics","type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title_sort":"Technometrics","title":"Technometrics","subtitle":"a journal of statistics for the physical, chemical and engineering sciences"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1537-2723"],"eki":["265779839"],"zdb":["1465861-6"]},"origin":[{"publisherPlace":"Abingdon ; Alexandria, Va.","publisher":"Taylor & Francis ; Assoc.","dateIssuedKey":"1959","dateIssuedDisp":"1959-"}],"name":{"displayForm":["American Statistical Association ; American Society for Quality Control"]}}],"physDesc":[{"extent":"12 S."}]} 
SRT |a NGUYENHAIKSPATIOTEMP1620