Multi-task and multi-view learning of user state

Several computational approaches have been proposed for inferring the affective state of the user, motivated for example by the goal of building improved interfaces that can adapt to the user׳s needs and internal state. While fairly good results have been obtained for inferring the user state under...

Full description

Saved in:
Bibliographic Details
Main Authors: Kandemir, Melih (Author) , Vetek, Akos (Author) , Gönen, Mehmet (Author) , Klami, Arto (Author) , Kaski, Samuel (Author)
Format: Article (Journal)
Language:English
Published: 18 April 2014
In: Neurocomputing
Year: 2014, Volume: 139, Pages: 97-106
ISSN:1872-8286
DOI:10.1016/j.neucom.2014.02.057
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.neucom.2014.02.057
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0925231214005025
Get full text
Author Notes:Melih Kandemir, Akos Vetek, Mehmet Gönen, Arto Klami, Samuel Kaski

MARC

LEADER 00000caa a2200000 c 4500
001 1728846633
003 DE-627
005 20220818191302.0
007 cr uuu---uuuuu
008 200903s2014 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.neucom.2014.02.057  |2 doi 
035 |a (DE-627)1728846633 
035 |a (DE-599)KXP1728846633 
035 |a (OCoLC)1341358581 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Kandemir, Melih  |d 1983-  |e VerfasserIn  |0 (DE-588)1067700463  |0 (DE-627)819103551  |0 (DE-576)426867181  |4 aut 
245 1 0 |a Multi-task and multi-view learning of user state  |c Melih Kandemir, Akos Vetek, Mehmet Gönen, Arto Klami, Samuel Kaski 
264 1 |c 18 April 2014 
300 |b Illustrationen 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 03.09.2020 
520 |a Several computational approaches have been proposed for inferring the affective state of the user, motivated for example by the goal of building improved interfaces that can adapt to the user׳s needs and internal state. While fairly good results have been obtained for inferring the user state under highly controlled conditions, a considerable amount of work remains to be done for learning high-quality estimates of subjective evaluations of the state in more natural conditions. In this work, we discuss how two recent machine learning concepts, multi-view learning and multi-task learning, can be adapted for user state recognition, and demonstrate them on two data collections of varying quality. Multi-view learning enables combining multiple measurement sensors in a justified way while automatically learning the importance of each sensor. Multi-task learning, in turn, tells how multiple learning tasks can be learned together to improve the accuracy. We demonstrate the use of two types of multi-task learning: learning both multiple state indicators and models for multiple users together. We also illustrate how the benefits of multi-task learning and multi-view learning can be effectively combined in a unified model by introducing a novel algorithm. 
650 4 |a Affect recognition 
650 4 |a Machine learning 
650 4 |a Multi-task learning 
650 4 |a Multi-view learning 
700 1 |a Vetek, Akos  |e VerfasserIn  |4 aut 
700 1 |a Gönen, Mehmet  |e VerfasserIn  |4 aut 
700 1 |a Klami, Arto  |e VerfasserIn  |4 aut 
700 1 |a Kaski, Samuel  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Neurocomputing  |d Amsterdam : Elsevier, 1989  |g 139(2014), Seite 97-106  |h Online-Ressource  |w (DE-627)271176008  |w (DE-600)1479006-3  |w (DE-576)078412358  |x 1872-8286  |7 nnas  |a Multi-task and multi-view learning of user state 
773 1 8 |g volume:139  |g year:2014  |g pages:97-106  |g extent:10  |a Multi-task and multi-view learning of user state 
856 4 0 |u https://doi.org/10.1016/j.neucom.2014.02.057  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0925231214005025  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200903 
993 |a Article 
994 |a 2014 
998 |g 1067700463  |a Kandemir, Melih  |m 1067700463:Kandemir, Melih  |d 700000  |d 708070  |e 700000PK1067700463  |e 708070PK1067700463  |k 0/700000/  |k 1/700000/708070/  |p 1  |x j 
999 |a KXP-PPN1728846633  |e 3746338638 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Melih Kandemir, Akos Vetek, Mehmet Gönen, Arto Klami, Samuel Kaski"]},"id":{"doi":["10.1016/j.neucom.2014.02.057"],"eki":["1728846633"]},"origin":[{"dateIssuedDisp":"18 April 2014","dateIssuedKey":"2014"}],"relHost":[{"title":[{"title_sort":"Neurocomputing","subtitle":"an international journal","title":"Neurocomputing"}],"disp":"Multi-task and multi-view learning of user stateNeurocomputing","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 22.05.23"],"language":["eng"],"recId":"271176008","pubHistory":["1.1989 - 74.2011; Vol. 75.2012 -"],"titleAlt":[{"title":"International journal of neurocomputing"}],"part":{"pages":"97-106","year":"2014","extent":"10","text":"139(2014), Seite 97-106","volume":"139"},"origin":[{"dateIssuedDisp":"1989-","publisher":"Elsevier","dateIssuedKey":"1989","publisherPlace":"Amsterdam"}],"id":{"issn":["1872-8286"],"zdb":["1479006-3"],"eki":["271176008"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"10 S.","noteIll":"Illustrationen"}],"person":[{"given":"Melih","family":"Kandemir","role":"aut","display":"Kandemir, Melih","roleDisplay":"VerfasserIn"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Vetek, Akos","given":"Akos","family":"Vetek"},{"display":"Gönen, Mehmet","roleDisplay":"VerfasserIn","role":"aut","family":"Gönen","given":"Mehmet"},{"given":"Arto","family":"Klami","role":"aut","roleDisplay":"VerfasserIn","display":"Klami, Arto"},{"family":"Kaski","given":"Samuel","roleDisplay":"VerfasserIn","display":"Kaski, Samuel","role":"aut"}],"title":[{"title_sort":"Multi-task and multi-view learning of user state","title":"Multi-task and multi-view learning of user state"}],"language":["eng"],"recId":"1728846633","note":["Gesehen am 03.09.2020"],"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a KANDEMIRMEMULTITASKA1820