Neural-Guided RANSAC: learning where to sample model hypotheses

We present Neural-Guided RANSAC (NG-RANSAC), an extension to the classic RANSAC algorithm from robust optimization. NG-RANSAC uses prior information to improve model hypothesis search, increasing the chance of finding outlier-free minimal sets. Previous works use heuristic side-information like hand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brachmann, Eric (VerfasserIn) , Rother, Carsten (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 31 Jul 2019
In: Arxiv

Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1905.04132
Volltext
Verfasserangaben:Eric Brachmann and Carsten Rother

MARC

LEADER 00000caa a2200000 c 4500
001 1731809948
003 DE-627
005 20220818195528.0
007 cr uuu---uuuuu
008 200914s2019 xx |||||o 00| ||eng c
035 |a (DE-627)1731809948 
035 |a (DE-599)KXP1731809948 
035 |a (OCoLC)1341359537 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Brachmann, Eric  |d 1987-  |e VerfasserIn  |0 (DE-588)1179206088  |0 (DE-627)1066600457  |0 (DE-576)518117634  |4 aut 
245 1 0 |a Neural-Guided RANSAC  |b learning where to sample model hypotheses  |c Eric Brachmann and Carsten Rother 
264 1 |c 31 Jul 2019 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.09.2020 
520 |a We present Neural-Guided RANSAC (NG-RANSAC), an extension to the classic RANSAC algorithm from robust optimization. NG-RANSAC uses prior information to improve model hypothesis search, increasing the chance of finding outlier-free minimal sets. Previous works use heuristic side-information like hand-crafted descriptor distance to guide hypothesis search. In contrast, we learn hypothesis search in a principled fashion that lets us optimize an arbitrary task loss during training, leading to large improvements on classic computer vision tasks. We present two further extensions to NG-RANSAC. Firstly, using the inlier count itself as training signal allows us to train neural guidance in a self-supervised fashion. Secondly, we combine neural guidance with differentiable RANSAC to build neural networks which focus on certain parts of the input data and make the output predictions as good as possible. We evaluate NG-RANSAC on a wide array of computer vision tasks, namely estimation of epipolar geometry, horizon line estimation and camera re-localization. We achieve superior or competitive results compared to state-of-the-art robust estimators, including very recent, learned ones. 
650 4 |a Computer Science - Computer Vision and Pattern Recognition 
700 1 |a Rother, Carsten  |e VerfasserIn  |0 (DE-588)1181464692  |0 (DE-627)1662676883  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2019) Artikel-Nummer 1905-04132, 17 Seiten  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Neural-Guided RANSAC learning where to sample model hypotheses 
773 1 8 |g year:2019  |g extent:17  |a Neural-Guided RANSAC learning where to sample model hypotheses 
787 0 8 |i Forschungsdaten  |a Brachmann, Eric, 1987 -   |t Neural-Guided RANSAC for estimating epipolar geometry [data]  |d Heidelberg : Universität, 2020  |h 1 Online-Ressource (1 File)  |w (DE-627)1731809190 
856 4 0 |u http://arxiv.org/abs/1905.04132  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200914 
993 |a Article 
994 |a 2020 
998 |g 1181464692  |a Rother, Carsten  |m 1181464692:Rother, Carsten  |d 700000  |d 708070  |d 700000  |d 728500  |e 700000PR1181464692  |e 708070PR1181464692  |e 700000PR1181464692  |e 728500PR1181464692  |k 0/700000/  |k 1/700000/708070/  |k 0/700000/  |k 1/700000/728500/  |p 2  |y j 
998 |g 1179206088  |a Brachmann, Eric  |m 1179206088:Brachmann, Eric  |d 700000  |d 708070  |e 700000PB1179206088  |e 708070PB1179206088  |k 0/700000/  |k 1/700000/708070/  |p 1  |x j 
999 |a KXP-PPN1731809948  |e 375294918X 
BIB |a Y 
JSO |a {"relHost":[{"origin":[{"dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"disp":"Neural-Guided RANSAC learning where to sample model hypothesesArxiv","note":["Gesehen am 28.05.2024"],"type":{"bibl":"edited-book","media":"Online-Ressource"},"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"part":{"text":"(2019) Artikel-Nummer 1905-04132, 17 Seiten","extent":"17","year":"2019"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}]}],"physDesc":[{"extent":"17 S."}],"name":{"displayForm":["Eric Brachmann and Carsten Rother"]},"id":{"eki":["1731809948"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"31 Jul 2019"}],"recId":"1731809948","language":["eng"],"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 14.09.2020"],"person":[{"family":"Brachmann","given":"Eric","roleDisplay":"VerfasserIn","display":"Brachmann, Eric","role":"aut"},{"display":"Rother, Carsten","roleDisplay":"VerfasserIn","role":"aut","family":"Rother","given":"Carsten"}],"title":[{"title_sort":"Neural-Guided RANSAC","subtitle":"learning where to sample model hypotheses","title":"Neural-Guided RANSAC"}]} 
SRT |a BRACHMANNENEURALGUID3120