3D two-photon microprinting of nanoporous architectures

A photoresist system for 3D two-photon microprinting is presented, which enables the printing of inherently nanoporous structures with mean pore sizes around 50 nm by means of self-organization on the nanoscale. A phase separation between polymerizable and chemically inert photoresist components lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mayer, Frederik (VerfasserIn) , Ryklin, Daniel (VerfasserIn) , Wacker, Irene (VerfasserIn) , Curticean, Ernest Ronald (VerfasserIn) , Čalkovský, Martin (VerfasserIn) , Niemeyer, Andreas (VerfasserIn) , Dong, Zheqin (VerfasserIn) , Levkin, Pavel A. (VerfasserIn) , Gerthsen, Dagmar (VerfasserIn) , Schröder, Rasmus R. (VerfasserIn) , Wegener, Martin (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: June 30, 2020
In: Advanced materials
Year: 2020, Jahrgang: 32, Heft: 32
ISSN:1521-4095
DOI:10.1002/adma.202002044
Online-Zugang:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1002/adma.202002044
Verlag, lizenzpflichtig, Volltext: https://pericles.pericles-prod.literatumonline.com/doi/abs/10.1002/adma.202002044
Volltext
Verfasserangaben:Frederik Mayer, Daniel Ryklin, Irene Wacker, Ronald Curticean, Martin Čalkovský, Andreas Niemeyer, Zheqin Dong, Pavel A. Levkin, Dagmar Gerthsen, Rasmus R. Schröder, and Martin Wegener
Beschreibung
Zusammenfassung:A photoresist system for 3D two-photon microprinting is presented, which enables the printing of inherently nanoporous structures with mean pore sizes around 50 nm by means of self-organization on the nanoscale. A phase separation between polymerizable and chemically inert photoresist components leads to the formation of 3D co-continuous structures. Subsequent washing-out of the unpolymerized phase reveals the porous polymer structures. To characterize the volume properties of the printed structures, scanning electron microscopy images are recorded from ultramicrotome sections. In addition, the light-scattering properties of the 3D-printed material are analyzed. By adjusting the printing parameters, the porosity can be controlled during 3D printing. As an application example, a functioning miniaturized Ulbricht light-collection sphere is 3D printed and tested.
Beschreibung:Gesehen am 15.09.2020
Beschreibung:Online Resource
ISSN:1521-4095
DOI:10.1002/adma.202002044