Rational functions and modular forms
There are two elementary methods for constructing modular forms that dominate in literature. One of them uses automorphic Poincaré series and the other one theta functions. We start a third elementary approach to modular forms using rational functions that have certain properties regarding pole dis...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
[October 2020]
|
| In: |
Proceedings of the American Mathematical Society
Year: 2020, Jahrgang: 148, Heft: 10, Pages: 4151-4164 |
| ISSN: | 1088-6826 |
| DOI: | 10.1090/proc/15034 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1090/proc/15034 Verlag, lizenzpflichtig, Volltext: https://www.ams.org/proc/2020-148-10/S0002-9939-2020-15034-4/ |
| Verfasserangaben: | J. Franke |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1733331298 | ||
| 003 | DE-627 | ||
| 005 | 20220818202527.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200918s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1090/proc/15034 |2 doi | |
| 035 | |a (DE-627)1733331298 | ||
| 035 | |a (DE-599)KXP1733331298 | ||
| 035 | |a (OCoLC)1341360763 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Franke, Johann |d 1992- |e VerfasserIn |0 (DE-588)1178490424 |0 (DE-627)1049414365 |0 (DE-576)517810972 |4 aut | |
| 245 | 1 | 0 | |a Rational functions and modular forms |c J. Franke |
| 264 | 1 | |c [October 2020] | |
| 300 | |a 14 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Article electronically published on June 30, 2020 | ||
| 500 | |a Gesehen am 18.09.2020 | ||
| 520 | |a There are two elementary methods for constructing modular forms that dominate in literature. One of them uses automorphic Poincaré series and the other one theta functions. We start a third elementary approach to modular forms using rational functions that have certain properties regarding pole distribution and growth. We prove modularity with contour integration methods and Weil's converse theorem, without using the classical formalism of Eisenstein series and -functions. | ||
| 650 | 4 | |a contour integration | |
| 650 | 4 | |a Eisenstein series | |
| 650 | 4 | |a rational functions | |
| 650 | 4 | |a Weil’s converse theorem | |
| 773 | 0 | 8 | |i Enthalten in |a American Mathematical Society |t Proceedings of the American Mathematical Society |d Providence, RI : Soc., 1950 |g 148(2020), 10, Seite 4151-4164 |h Online-Ressource |w (DE-627)270129839 |w (DE-600)1476739-9 |w (DE-576)079876188 |x 1088-6826 |7 nnas |
| 773 | 1 | 8 | |g volume:148 |g year:2020 |g number:10 |g pages:4151-4164 |g extent:14 |a Rational functions and modular forms |
| 856 | 4 | 0 | |u https://doi.org/10.1090/proc/15034 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.ams.org/proc/2020-148-10/S0002-9939-2020-15034-4/ |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200918 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1178490424 |a Franke, Johann |m 1178490424:Franke, Johann |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PF1178490424 |e 110100PF1178490424 |e 110000PF1178490424 |e 110400PF1178490424 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1733331298 |e 3758613183 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"origin":[{"dateIssuedDisp":"[October 2020]","dateIssuedKey":"2020"}],"id":{"doi":["10.1090/proc/15034"],"eki":["1733331298"]},"name":{"displayForm":["J. Franke"]},"physDesc":[{"extent":"14 S."}],"relHost":[{"origin":[{"publisherPlace":"Providence, RI","dateIssuedDisp":"1950-","publisher":"Soc.","dateIssuedKey":"1950"}],"id":{"zdb":["1476739-9"],"eki":["270129839"],"issn":["1088-6826"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Proceedings of the American Mathematical Society","title":"Proceedings of the American Mathematical Society"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 09.07.24"],"disp":"American Mathematical SocietyProceedings of the American Mathematical Society","recId":"270129839","language":["eng"],"corporate":[{"roleDisplay":"VerfasserIn","display":"American Mathematical Society","role":"aut"}],"pubHistory":["1.1950 -"],"part":{"year":"2020","pages":"4151-4164","issue":"10","text":"148(2020), 10, Seite 4151-4164","volume":"148","extent":"14"}}],"title":[{"title_sort":"Rational functions and modular forms","title":"Rational functions and modular forms"}],"person":[{"role":"aut","display":"Franke, Johann","roleDisplay":"VerfasserIn","given":"Johann","family":"Franke"}],"note":["Article electronically published on June 30, 2020","Gesehen am 18.09.2020"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1733331298"} | ||
| SRT | |a FRANKEJOHARATIONALFU2020 | ||