Unravelling the Kinetic Model of Photochemical Reactions via Deep Learning

Time-resolved spectroscopies have been playing an essential role in the elucidation of the fundamental mechanisms of light-driven processes, particularly in exploring relaxation models for electronically excited molecules. However, the determination of such models from experimentally obtained time-r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kollenz, Philipp (VerfasserIn) , Herten, Dirk-Peter (VerfasserIn) , Buckup, Tiago (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: June 26, 2020
In: The journal of physical chemistry. B, Biophysics, biomaterials, liquids, and soft matter
Year: 2020, Jahrgang: 124, Heft: 29, Pages: 6358-6368
ISSN:1520-5207
DOI:10.1021/acs.jpcb.0c04299
Online-Zugang:Verlag, Volltext: https://doi.org/10.1021/acs.jpcb.0c04299
Volltext
Verfasserangaben:Philipp Kollenz, Dirk-Peter Herten, and Tiago Buckup

MARC

LEADER 00000caa a2200000 c 4500
001 1733507523
003 DE-627
005 20230427150657.0
007 cr uuu---uuuuu
008 200921s2020 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.jpcb.0c04299  |2 doi 
035 |a (DE-627)1733507523 
035 |a (DE-599)KXP1733507523 
035 |a (OCoLC)1341361030 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 30  |2 sdnb 
100 1 |a Kollenz, Philipp  |e VerfasserIn  |0 (DE-588)121804652X  |0 (DE-627)1733507310  |4 aut 
245 1 0 |a Unravelling the Kinetic Model of Photochemical Reactions via Deep Learning  |c Philipp Kollenz, Dirk-Peter Herten, and Tiago Buckup 
264 1 |c June 26, 2020 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 21.09.2020 
520 |a Time-resolved spectroscopies have been playing an essential role in the elucidation of the fundamental mechanisms of light-driven processes, particularly in exploring relaxation models for electronically excited molecules. However, the determination of such models from experimentally obtained time-resolved and spectrally resolved data still demands a high degree of intuition, frequently poses numerical challenges, and is often not free from ambiguities. Here, we demonstrate the analysis of time-resolved laser spectroscopy data via a deep learning network to obtain the correct relaxation kinetic model. In its current design, the presented Deep Spectroscopy Kinetic Analysis Network (DeepSKAN) can predict kinetic models (involved states and relaxation pathways) consisting of up to five states, which results in 103 possible different classes, by estimating the probability of occurrence of a given kinetic model class. DeepSKAN was trained with synthetic time-resolved spectra spanning over 4 orders of magnitude in time with a unitless time axis, thereby demonstrating its potential as a universal approach for analyzing data from various time-resolved spectroscopy techniques in different time ranges. By adding the probabilities of each pathway of the top-k models normalized by the total probability, we can determine the relaxation pathways for a given data set with high certainty (up to 99%). Due to its architecture and training, DeepSKAN is robust against experimental noise and typical preanalysis errors like time-zero corrections. Application of DeepSKAN to experimental data is successfully demonstrated for three different photoinduced processes: transient absorption of the retinal isomerization, transient IR spectroscopy of the relaxation of the photoactivated DRONPA, and transient absorption of the dynamics in lycopene. This approach delivers kinetic models and could be a unifying asset in several areas of spectroscopy. 
700 1 |a Herten, Dirk-Peter  |e VerfasserIn  |0 (DE-588)1020454768  |0 (DE-627)691223882  |0 (DE-576)360394051  |4 aut 
700 1 |a Buckup, Tiago  |d 1976-  |e VerfasserIn  |0 (DE-588)1080491090  |0 (DE-627)844732893  |0 (DE-576)453560830  |4 aut 
773 0 8 |i Enthalten in  |t The journal of physical chemistry. B, Biophysics, biomaterials, liquids, and soft matter  |d Washington, DC : Americal Chemical Society, 1997  |g 124(2020), 29, Seite 6358-6368  |h Online-Ressource  |w (DE-627)320450953  |w (DE-600)2006039-7  |w (DE-576)090889002  |x 1520-5207  |7 nnas  |a Unravelling the Kinetic Model of Photochemical Reactions via Deep Learning 
773 1 8 |g volume:124  |g year:2020  |g number:29  |g pages:6358-6368  |g extent:11  |a Unravelling the Kinetic Model of Photochemical Reactions via Deep Learning 
856 4 0 |u https://doi.org/10.1021/acs.jpcb.0c04299  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20200921 
993 |a Article 
994 |a 2020 
998 |g 1080491090  |a Buckup, Tiago  |m 1080491090:Buckup, Tiago  |d 120000  |d 120300  |e 120000PB1080491090  |e 120300PB1080491090  |k 0/120000/  |k 1/120000/120300/  |p 3  |y j 
998 |g 121804652X  |a Kollenz, Philipp  |m 121804652X:Kollenz, Philipp  |d 120000  |d 120300  |e 120000PK121804652X  |e 120300PK121804652X  |k 0/120000/  |k 1/120000/120300/  |p 1  |x j 
999 |a KXP-PPN1733507523  |e 3759933831 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"June 26, 2020","dateIssuedKey":"2020"}],"language":["eng"],"recId":"1733507523","note":["Gesehen am 21.09.2020"],"name":{"displayForm":["Philipp Kollenz, Dirk-Peter Herten, and Tiago Buckup"]},"relHost":[{"part":{"extent":"11","volume":"124","year":"2020","text":"124(2020), 29, Seite 6358-6368","pages":"6358-6368","issue":"29"},"titleAlt":[{"title":"The journal of physical chemistry <Washington, DC> / B"},{"title":"Condensed matter, materials, surfaces, interfaces & biophysical chemistry"}],"disp":"Unravelling the Kinetic Model of Photochemical Reactions via Deep LearningThe journal of physical chemistry. B, Biophysics, biomaterials, liquids, and soft matter","type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title_sort":"journal of physical chemistry","partname":"Biophysics, biomaterials, liquids, and soft matter","title":"The journal of physical chemistry"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1520-5207"],"eki":["320450953"],"zdb":["2006039-7"]},"origin":[{"dateIssuedKey":"1997","publisher":"Americal Chemical Society","dateIssuedDisp":"1997-","publisherPlace":"Washington, DC"}],"recId":"320450953","language":["eng"],"note":["Gesehen am 30.05.2023"],"name":{"displayForm":["American Chemical Society"]},"pubHistory":["101.1997 -"]}],"title":[{"title_sort":"Unravelling the Kinetic Model of Photochemical Reactions via Deep Learning","title":"Unravelling the Kinetic Model of Photochemical Reactions via Deep Learning"}],"physDesc":[{"extent":"11 S."}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"doi":["10.1021/acs.jpcb.0c04299"],"eki":["1733507523"]},"person":[{"family":"Kollenz","display":"Kollenz, Philipp","role":"aut","given":"Philipp"},{"display":"Herten, Dirk-Peter","family":"Herten","given":"Dirk-Peter","role":"aut"},{"role":"aut","given":"Tiago","family":"Buckup","display":"Buckup, Tiago"}]} 
SRT |a KOLLENZPHIUNRAVELLIN2620