On solutions to the exterior Dirichlet problem for the minimal surface equation with catenoidal ends
In this paper we investigate the Dirichlet problem for the minimal surface - equation on certain nonconvex domains of the plane. In our first result, - we give, by an independent proof, a numerically explicit - version of Williams' existence theorem. Our main result concerns the - Dirichlet pro...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2014
|
| In: |
Advances in calculus of variations
Year: 2012, Jahrgang: 7, Heft: 2, Pages: 205-226 |
| ISSN: | 1864-8266 |
| DOI: | 10.1515/acv-2012-0010 |
| Online-Zugang: | Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1515/acv-2012-0010 Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/view/journals/acv/7/2/article-p205.xml |
| Verfasserangaben: | Jaime Ripoll, Friedrich Tomi |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1733915575 | ||
| 003 | DE-627 | ||
| 005 | 20250530010305.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200929r20142012xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1515/acv-2012-0010 |2 doi | |
| 035 | |a (DE-627)1733915575 | ||
| 035 | |a (DE-599)KXP1733915575 | ||
| 035 | |a (OCoLC)1341361806 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Ripoll, Jaime |e VerfasserIn |0 (DE-588)1154558355 |0 (DE-627)1015949576 |0 (DE-576)501108882 |4 aut | |
| 245 | 1 | 0 | |a On solutions to the exterior Dirichlet problem for the minimal surface equation with catenoidal ends |c Jaime Ripoll, Friedrich Tomi |
| 264 | 1 | |c 2014 | |
| 300 | |a 22 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online veröffentlicht: 15.12.2012 | ||
| 500 | |a Gesehen am 29.09.2020 | ||
| 520 | |a In this paper we investigate the Dirichlet problem for the minimal surface - equation on certain nonconvex domains of the plane. In our first result, - we give, by an independent proof, a numerically explicit - version of Williams' existence theorem. Our main result concerns the - Dirichlet problem on exterior domains. It was shown by Krust (1989) and - Kuwert (1993) that between two different solutions with the same normal at - infinity there is a continuum of solutions foliating the space in between. We - investigate the space of solutions further and show that, unless it is empty, - it contains a maximal and a minimal solution if the boundary data is - rectifiable. In the case of sufficiently smooth data we parametrize the set of - solutions in terms of the extremal inclinations which the normal of the graph - of a solution reaches at the boundary. We show that all theoretically possible - values are realized including the horizontal position of the normal for the - minimal and maximal solutions. We moreover give an example where the maximal - and the minimal solution coincide so that there is exactly one with given - normal at infinity. This answers a natural question which has not been touched - in the previous papers. | ||
| 534 | |c 2012 | ||
| 700 | 1 | |a Tomi, Friedrich |d 1943- |e VerfasserIn |0 (DE-588)1123747121 |0 (DE-627)880189614 |0 (DE-576)482096004 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Advances in calculus of variations |d Berlin : de Gruyter, 2008 |g 7(2014), 2, Seite 205-226 |h Online-Ressource |w (DE-627)568485882 |w (DE-600)2428596-1 |w (DE-576)303225807 |x 1864-8266 |7 nnas |a On solutions to the exterior Dirichlet problem for the minimal surface equation with catenoidal ends |
| 773 | 1 | 8 | |g volume:7 |g year:2014 |g number:2 |g pages:205-226 |g extent:22 |a On solutions to the exterior Dirichlet problem for the minimal surface equation with catenoidal ends |
| 856 | 4 | 0 | |u https://doi.org/10.1515/acv-2012-0010 |x Resolving-System |x Verlag |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.degruyterbrill.com/view/journals/acv/7/2/article-p205.xml |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200929 | ||
| 993 | |a Article | ||
| 994 | |a 2014 | ||
| 998 | |g 1123747121 |a Tomi, Friedrich |m 1123747121:Tomi, Friedrich |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PT1123747121 |e 110100PT1123747121 |e 110000PT1123747121 |e 110400PT1123747121 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 2 |y j | ||
| 999 | |a KXP-PPN1733915575 |e 3763817980 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"recId":"1733915575","language":["eng"],"note":["Online veröffentlicht: 15.12.2012","Gesehen am 29.09.2020"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"family":"Ripoll","given":"Jaime","roleDisplay":"VerfasserIn","display":"Ripoll, Jaime","role":"aut"},{"family":"Tomi","given":"Friedrich","roleDisplay":"VerfasserIn","display":"Tomi, Friedrich","role":"aut"}],"title":[{"title":"On solutions to the exterior Dirichlet problem for the minimal surface equation with catenoidal ends","title_sort":"On solutions to the exterior Dirichlet problem for the minimal surface equation with catenoidal ends"}],"relHost":[{"id":{"zdb":["2428596-1"],"doi":["10.1515/acv"],"eki":["568485882"],"issn":["1864-8266"]},"title":[{"title_sort":"Advances in calculus of variations","title":"Advances in calculus of variations"}],"origin":[{"publisherPlace":"Berlin","dateIssuedDisp":"2008-","publisher":"de Gruyter","dateIssuedKey":"2008"}],"recId":"568485882","language":["eng"],"disp":"On solutions to the exterior Dirichlet problem for the minimal surface equation with catenoidal endsAdvances in calculus of variations","type":{"bibl":"periodical","media":"Online-Ressource"},"physDesc":[{"extent":"Online-Ressource"}],"part":{"volume":"7","text":"7(2014), 2, Seite 205-226","extent":"22","year":"2014","pages":"205-226","issue":"2"},"pubHistory":["1.2008 -"]}],"physDesc":[{"extent":"22 S."}],"name":{"displayForm":["Jaime Ripoll, Friedrich Tomi"]},"id":{"doi":["10.1515/acv-2012-0010"],"eki":["1733915575"]},"origin":[{"dateIssuedDisp":"2014","dateIssuedKey":"2014"}]} | ||
| SRT | |a RIPOLLJAIMONSOLUTION2014 | ||