On solutions to the exterior Dirichlet problem for the minimal surface equation with catenoidal ends

In this paper we investigate the Dirichlet problem for the minimal surface - equation on certain nonconvex domains of the plane. In our first result, - we give, by an independent proof, a numerically explicit - version of Williams' existence theorem. Our main result concerns the - Dirichlet pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ripoll, Jaime (VerfasserIn) , Tomi, Friedrich (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2014
In: Advances in calculus of variations
Year: 2012, Jahrgang: 7, Heft: 2, Pages: 205-226
ISSN:1864-8266
DOI:10.1515/acv-2012-0010
Online-Zugang:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1515/acv-2012-0010
Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/view/journals/acv/7/2/article-p205.xml
Volltext
Verfasserangaben:Jaime Ripoll, Friedrich Tomi

MARC

LEADER 00000caa a22000002c 4500
001 1733915575
003 DE-627
005 20250530010305.0
007 cr uuu---uuuuu
008 200929r20142012xx |||||o 00| ||eng c
024 7 |a 10.1515/acv-2012-0010  |2 doi 
035 |a (DE-627)1733915575 
035 |a (DE-599)KXP1733915575 
035 |a (OCoLC)1341361806 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Ripoll, Jaime  |e VerfasserIn  |0 (DE-588)1154558355  |0 (DE-627)1015949576  |0 (DE-576)501108882  |4 aut 
245 1 0 |a On solutions to the exterior Dirichlet problem for the minimal surface equation with catenoidal ends  |c Jaime Ripoll, Friedrich Tomi 
264 1 |c 2014 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 15.12.2012 
500 |a Gesehen am 29.09.2020 
520 |a In this paper we investigate the Dirichlet problem for the minimal surface - equation on certain nonconvex domains of the plane. In our first result, - we give, by an independent proof, a numerically explicit - version of Williams' existence theorem. Our main result concerns the - Dirichlet problem on exterior domains. It was shown by Krust (1989) and - Kuwert (1993) that between two different solutions with the same normal at - infinity there is a continuum of solutions foliating the space in between. We - investigate the space of solutions further and show that, unless it is empty, - it contains a maximal and a minimal solution if the boundary data is - rectifiable. In the case of sufficiently smooth data we parametrize the set of - solutions in terms of the extremal inclinations which the normal of the graph - of a solution reaches at the boundary. We show that all theoretically possible - values are realized including the horizontal position of the normal for the - minimal and maximal solutions. We moreover give an example where the maximal - and the minimal solution coincide so that there is exactly one with given - normal at infinity. This answers a natural question which has not been touched - in the previous papers. 
534 |c 2012 
700 1 |a Tomi, Friedrich  |d 1943-  |e VerfasserIn  |0 (DE-588)1123747121  |0 (DE-627)880189614  |0 (DE-576)482096004  |4 aut 
773 0 8 |i Enthalten in  |t Advances in calculus of variations  |d Berlin : de Gruyter, 2008  |g 7(2014), 2, Seite 205-226  |h Online-Ressource  |w (DE-627)568485882  |w (DE-600)2428596-1  |w (DE-576)303225807  |x 1864-8266  |7 nnas  |a On solutions to the exterior Dirichlet problem for the minimal surface equation with catenoidal ends 
773 1 8 |g volume:7  |g year:2014  |g number:2  |g pages:205-226  |g extent:22  |a On solutions to the exterior Dirichlet problem for the minimal surface equation with catenoidal ends 
856 4 0 |u https://doi.org/10.1515/acv-2012-0010  |x Resolving-System  |x Verlag  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.degruyterbrill.com/view/journals/acv/7/2/article-p205.xml  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200929 
993 |a Article 
994 |a 2014 
998 |g 1123747121  |a Tomi, Friedrich  |m 1123747121:Tomi, Friedrich  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PT1123747121  |e 110100PT1123747121  |e 110000PT1123747121  |e 110400PT1123747121  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 2  |y j 
999 |a KXP-PPN1733915575  |e 3763817980 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1733915575","language":["eng"],"note":["Online veröffentlicht: 15.12.2012","Gesehen am 29.09.2020"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"family":"Ripoll","given":"Jaime","roleDisplay":"VerfasserIn","display":"Ripoll, Jaime","role":"aut"},{"family":"Tomi","given":"Friedrich","roleDisplay":"VerfasserIn","display":"Tomi, Friedrich","role":"aut"}],"title":[{"title":"On solutions to the exterior Dirichlet problem for the minimal surface equation with catenoidal ends","title_sort":"On solutions to the exterior Dirichlet problem for the minimal surface equation with catenoidal ends"}],"relHost":[{"id":{"zdb":["2428596-1"],"doi":["10.1515/acv"],"eki":["568485882"],"issn":["1864-8266"]},"title":[{"title_sort":"Advances in calculus of variations","title":"Advances in calculus of variations"}],"origin":[{"publisherPlace":"Berlin","dateIssuedDisp":"2008-","publisher":"de Gruyter","dateIssuedKey":"2008"}],"recId":"568485882","language":["eng"],"disp":"On solutions to the exterior Dirichlet problem for the minimal surface equation with catenoidal endsAdvances in calculus of variations","type":{"bibl":"periodical","media":"Online-Ressource"},"physDesc":[{"extent":"Online-Ressource"}],"part":{"volume":"7","text":"7(2014), 2, Seite 205-226","extent":"22","year":"2014","pages":"205-226","issue":"2"},"pubHistory":["1.2008 -"]}],"physDesc":[{"extent":"22 S."}],"name":{"displayForm":["Jaime Ripoll, Friedrich Tomi"]},"id":{"doi":["10.1515/acv-2012-0010"],"eki":["1733915575"]},"origin":[{"dateIssuedDisp":"2014","dateIssuedKey":"2014"}]} 
SRT |a RIPOLLJAIMONSOLUTION2014