A generalization of majorization that characterizes shannon entropy
We introduce a binary relation on the finite discrete probability distributions, which generalizes notions of majorization that have been studied in quantum information theory. Motivated by questions in thermodynamics, our relation describes the transitions induced by bistochastic maps in the presen...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
11 February 2016
|
| In: |
IEEE transactions on information theory
Year: 2016, Volume: 62, Issue: 4, Pages: 1711-1720 |
| DOI: | 10.1109/TIT.2016.2528285 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1109/TIT.2016.2528285 |
| Author Notes: | Markus P. Müller and Michele Pastena |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1734482974 | ||
| 003 | DE-627 | ||
| 005 | 20220818214212.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 201002s2016 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1109/TIT.2016.2528285 |2 doi | |
| 035 | |a (DE-627)1734482974 | ||
| 035 | |a (DE-599)KXP1734482974 | ||
| 035 | |a (OCoLC)1341368269 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Müller, Markus P. |e VerfasserIn |0 (DE-588)1169161553 |0 (DE-627)1032795085 |0 (DE-576)511949510 |4 aut | |
| 245 | 1 | 2 | |a A generalization of majorization that characterizes shannon entropy |c Markus P. Müller and Michele Pastena |
| 264 | 1 | |c 11 February 2016 | |
| 300 | |a 10 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 02.10.2020 | ||
| 520 | |a We introduce a binary relation on the finite discrete probability distributions, which generalizes notions of majorization that have been studied in quantum information theory. Motivated by questions in thermodynamics, our relation describes the transitions induced by bistochastic maps in the presence of additional auxiliary systems, which may become correlated in the process. We show that this relation is completely characterized by Shannon entropy H, which yields an interpretation of H in resource-theoretic terms, and admits a particularly simple proof of a known characterization of H in terms of natural information-theoretic properties. | ||
| 650 | 4 | |a auxiliary systems | |
| 650 | 4 | |a binary relation | |
| 650 | 4 | |a bistochastic maps | |
| 650 | 4 | |a Context | |
| 650 | 4 | |a entropy | |
| 650 | 4 | |a Entropy | |
| 650 | 4 | |a finite discrete probability distributions | |
| 650 | 4 | |a Information theory | |
| 650 | 4 | |a Majorization | |
| 650 | 4 | |a natural information-theoretic properties | |
| 650 | 4 | |a probability | |
| 650 | 4 | |a Probability distribution | |
| 650 | 4 | |a quantum information | |
| 650 | 4 | |a quantum information theory | |
| 650 | 4 | |a Quantum mechanics | |
| 650 | 4 | |a Random variables | |
| 650 | 4 | |a resource-theoretic terms | |
| 650 | 4 | |a Shannon entropy | |
| 650 | 4 | |a thermodynamics | |
| 650 | 4 | |a Thermodynamics | |
| 700 | 1 | |a Pastena, Michele |e VerfasserIn |0 (DE-588)1211406571 |0 (DE-627)1699289204 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a Institute of Electrical and Electronics Engineers |t IEEE transactions on information theory |d Piscataway, NJ : IEEE, 1963 |g 62(2016), 4, Seite 1711-1720 |h Online-Ressource |w (DE-627)323607535 |w (DE-600)2026365-X |w (DE-576)094085889 |7 nnas |
| 773 | 1 | 8 | |g volume:62 |g year:2016 |g number:4 |g pages:1711-1720 |g extent:10 |a A generalization of majorization that characterizes shannon entropy |
| 856 | 4 | 0 | |u https://doi.org/10.1109/TIT.2016.2528285 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20201002 | ||
| 993 | |a Article | ||
| 994 | |a 2016 | ||
| 998 | |g 1169161553 |a Müller, Markus P. |m 1169161553:Müller, Markus P. |p 1 |x j | ||
| 998 | |g 1211406571 |a Pastena, Michele |m 1211406571:Pastena, Michele |d 700000 |d 741000 |d 741010 |e 700000PP1211406571 |e 741000PP1211406571 |e 741010PP1211406571 |k 0/700000/ |k 1/700000/741000/ |k 2/700000/741000/741010/ |p 2 |y j | ||
| 999 | |a KXP-PPN1734482974 |e 3765016047 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"roleDisplay":"VerfasserIn","display":"Müller, Markus P.","role":"aut","family":"Müller","given":"Markus P."},{"role":"aut","display":"Pastena, Michele","roleDisplay":"VerfasserIn","given":"Michele","family":"Pastena"}],"title":[{"title":"A generalization of majorization that characterizes shannon entropy","title_sort":"generalization of majorization that characterizes shannon entropy"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 02.10.2020"],"recId":"1734482974","language":["eng"],"name":{"displayForm":["Markus P. Müller and Michele Pastena"]},"origin":[{"dateIssuedDisp":"11 February 2016","dateIssuedKey":"2016"}],"id":{"eki":["1734482974"],"doi":["10.1109/TIT.2016.2528285"]},"physDesc":[{"extent":"10 S."}],"relHost":[{"origin":[{"publisher":"IEEE","dateIssuedKey":"1963","dateIssuedDisp":"1963-","publisherPlace":"Piscataway, NJ"}],"id":{"eki":["323607535"],"zdb":["2026365-X"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"IEEE transactions on information theory","title":"IEEE transactions on information theory","subtitle":"a journal devoted to the theoretical and experimental aspects of information transmission, processing, and utilization ; a publication of the IEEE Information Theory Society"}],"pubHistory":["9.1963 -"],"titleAlt":[{"title":"Transactions on information theory"}],"part":{"extent":"10","text":"62(2016), 4, Seite 1711-1720","volume":"62","pages":"1711-1720","issue":"4","year":"2016"},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Institute of Electrical and Electronics EngineersIEEE transactions on information theory","note":["Gesehen am 10.07.09"],"recId":"323607535","language":["eng"],"corporate":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Institute of Electrical and Electronics Engineers"}]}]} | ||
| SRT | |a MUELLERMARGENERALIZA1120 | ||