A generalization of majorization that characterizes shannon entropy

We introduce a binary relation on the finite discrete probability distributions, which generalizes notions of majorization that have been studied in quantum information theory. Motivated by questions in thermodynamics, our relation describes the transitions induced by bistochastic maps in the presen...

Full description

Saved in:
Bibliographic Details
Main Authors: Müller, Markus P. (Author) , Pastena, Michele (Author)
Format: Article (Journal)
Language:English
Published: 11 February 2016
In: IEEE transactions on information theory
Year: 2016, Volume: 62, Issue: 4, Pages: 1711-1720
DOI:10.1109/TIT.2016.2528285
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1109/TIT.2016.2528285
Get full text
Author Notes:Markus P. Müller and Michele Pastena

MARC

LEADER 00000caa a2200000 c 4500
001 1734482974
003 DE-627
005 20220818214212.0
007 cr uuu---uuuuu
008 201002s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIT.2016.2528285  |2 doi 
035 |a (DE-627)1734482974 
035 |a (DE-599)KXP1734482974 
035 |a (OCoLC)1341368269 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Müller, Markus P.  |e VerfasserIn  |0 (DE-588)1169161553  |0 (DE-627)1032795085  |0 (DE-576)511949510  |4 aut 
245 1 2 |a A generalization of majorization that characterizes shannon entropy  |c Markus P. Müller and Michele Pastena 
264 1 |c 11 February 2016 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 02.10.2020 
520 |a We introduce a binary relation on the finite discrete probability distributions, which generalizes notions of majorization that have been studied in quantum information theory. Motivated by questions in thermodynamics, our relation describes the transitions induced by bistochastic maps in the presence of additional auxiliary systems, which may become correlated in the process. We show that this relation is completely characterized by Shannon entropy H, which yields an interpretation of H in resource-theoretic terms, and admits a particularly simple proof of a known characterization of H in terms of natural information-theoretic properties. 
650 4 |a auxiliary systems 
650 4 |a binary relation 
650 4 |a bistochastic maps 
650 4 |a Context 
650 4 |a entropy 
650 4 |a Entropy 
650 4 |a finite discrete probability distributions 
650 4 |a Information theory 
650 4 |a Majorization 
650 4 |a natural information-theoretic properties 
650 4 |a probability 
650 4 |a Probability distribution 
650 4 |a quantum information 
650 4 |a quantum information theory 
650 4 |a Quantum mechanics 
650 4 |a Random variables 
650 4 |a resource-theoretic terms 
650 4 |a Shannon entropy 
650 4 |a thermodynamics 
650 4 |a Thermodynamics 
700 1 |a Pastena, Michele  |e VerfasserIn  |0 (DE-588)1211406571  |0 (DE-627)1699289204  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on information theory  |d Piscataway, NJ : IEEE, 1963  |g 62(2016), 4, Seite 1711-1720  |h Online-Ressource  |w (DE-627)323607535  |w (DE-600)2026365-X  |w (DE-576)094085889  |7 nnas 
773 1 8 |g volume:62  |g year:2016  |g number:4  |g pages:1711-1720  |g extent:10  |a A generalization of majorization that characterizes shannon entropy 
856 4 0 |u https://doi.org/10.1109/TIT.2016.2528285  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20201002 
993 |a Article 
994 |a 2016 
998 |g 1169161553  |a Müller, Markus P.  |m 1169161553:Müller, Markus P.  |p 1  |x j 
998 |g 1211406571  |a Pastena, Michele  |m 1211406571:Pastena, Michele  |d 700000  |d 741000  |d 741010  |e 700000PP1211406571  |e 741000PP1211406571  |e 741010PP1211406571  |k 0/700000/  |k 1/700000/741000/  |k 2/700000/741000/741010/  |p 2  |y j 
999 |a KXP-PPN1734482974  |e 3765016047 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"roleDisplay":"VerfasserIn","display":"Müller, Markus P.","role":"aut","family":"Müller","given":"Markus P."},{"role":"aut","display":"Pastena, Michele","roleDisplay":"VerfasserIn","given":"Michele","family":"Pastena"}],"title":[{"title":"A generalization of majorization that characterizes shannon entropy","title_sort":"generalization of majorization that characterizes shannon entropy"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 02.10.2020"],"recId":"1734482974","language":["eng"],"name":{"displayForm":["Markus P. Müller and Michele Pastena"]},"origin":[{"dateIssuedDisp":"11 February 2016","dateIssuedKey":"2016"}],"id":{"eki":["1734482974"],"doi":["10.1109/TIT.2016.2528285"]},"physDesc":[{"extent":"10 S."}],"relHost":[{"origin":[{"publisher":"IEEE","dateIssuedKey":"1963","dateIssuedDisp":"1963-","publisherPlace":"Piscataway, NJ"}],"id":{"eki":["323607535"],"zdb":["2026365-X"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"IEEE transactions on information theory","title":"IEEE transactions on information theory","subtitle":"a journal devoted to the theoretical and experimental aspects of information transmission, processing, and utilization ; a publication of the IEEE Information Theory Society"}],"pubHistory":["9.1963 -"],"titleAlt":[{"title":"Transactions on information theory"}],"part":{"extent":"10","text":"62(2016), 4, Seite 1711-1720","volume":"62","pages":"1711-1720","issue":"4","year":"2016"},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Institute of Electrical and Electronics EngineersIEEE transactions on information theory","note":["Gesehen am 10.07.09"],"recId":"323607535","language":["eng"],"corporate":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Institute of Electrical and Electronics Engineers"}]}]} 
SRT |a MUELLERMARGENERALIZA1120