A self-taught artificial agent for multi-physics computational model personalization

Personalization is the process of fitting a model to patient data, a critical step towards application of multi-physics computational models in clinical practice. Designing robust personalization algorithms is often a tedious, time-consuming, model- and data-specific process. We propose to use artif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Neumann, Dominik (VerfasserIn) , Mansi, Tommaso (VerfasserIn) , Itu, Lucian (VerfasserIn) , Georgescu, Bogdan (VerfasserIn) , Kayvanpour, Elham (VerfasserIn) , Sedaghat-Hamedani, Farbod (VerfasserIn) , Amr, Ali (VerfasserIn) , Haas, Jan (VerfasserIn) , Katus, Hugo (VerfasserIn) , Meder, Benjamin (VerfasserIn) , Steidl, Stefan (VerfasserIn) , Hornegger, Joachim (VerfasserIn) , Comaniciu, Dorin (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21 April 2016
In: Medical image analysis
Year: 2016, Jahrgang: 34, Pages: 52-64
ISSN:1361-8423
DOI:10.1016/j.media.2016.04.003
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.media.2016.04.003
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S1361841516300214
Volltext
Verfasserangaben:Dominik Neumann, Tommaso Mansi, Lucian Itu, Bogdan Georgescu, Elham Kayvanpour, Farbod Sedaghat-Hamedani, Ali Amr, Jan Haas, Hugo Katus, Benjamin Meder, Stefan Steidl, Joachim Hornegger, Dorin Comaniciu

MARC

LEADER 00000caa a2200000 c 4500
001 1735248533
003 DE-627
005 20230427161402.0
007 cr uuu---uuuuu
008 201009s2016 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.media.2016.04.003  |2 doi 
035 |a (DE-627)1735248533 
035 |a (DE-599)KXP1735248533 
035 |a (OCoLC)1341370843 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Neumann, Dominik  |e VerfasserIn  |0 (DE-588)1193502527  |0 (DE-627)1672170575  |4 aut 
245 1 2 |a A self-taught artificial agent for multi-physics computational model personalization  |c Dominik Neumann, Tommaso Mansi, Lucian Itu, Bogdan Georgescu, Elham Kayvanpour, Farbod Sedaghat-Hamedani, Ali Amr, Jan Haas, Hugo Katus, Benjamin Meder, Stefan Steidl, Joachim Hornegger, Dorin Comaniciu 
264 1 |c 21 April 2016 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 09.10.2020 
520 |a Personalization is the process of fitting a model to patient data, a critical step towards application of multi-physics computational models in clinical practice. Designing robust personalization algorithms is often a tedious, time-consuming, model- and data-specific process. We propose to use artificial intelligence concepts to learn this task, inspired by how human experts manually perform it. The problem is reformulated in terms of reinforcement learning. In an off-line phase, Vito, our self-taught artificial agent, learns a representative decision process model through exploration of the computational model: it learns how the model behaves under change of parameters. The agent then automatically learns an optimal strategy for on-line personalization. The algorithm is model-independent; applying it to a new model requires only adjusting few hyper-parameters of the agent and defining the observations to match. The full knowledge of the model itself is not required. Vito was tested in a synthetic scenario, showing that it could learn how to optimize cost functions generically. Then Vito was applied to the inverse problem of cardiac electrophysiology and the personalization of a whole-body circulation model. The obtained results suggested that Vito could achieve equivalent, if not better goodness of fit than standard methods, while being more robust (up to 11% higher success rates) and with faster (up to seven times) convergence rate. Our artificial intelligence approach could thus make personalization algorithms generalizable and self-adaptable to any patient and any model. 
650 4 |a Artificial intelligence 
650 4 |a Computational modeling 
650 4 |a Model personalization 
650 4 |a Reinforcement learning 
700 1 |a Mansi, Tommaso  |e VerfasserIn  |4 aut 
700 1 |a Itu, Lucian  |e VerfasserIn  |4 aut 
700 1 |a Georgescu, Bogdan  |e VerfasserIn  |4 aut 
700 1 |a Kayvanpour, Elham  |d 1984-  |e VerfasserIn  |0 (DE-588)1033468983  |0 (DE-627)741277573  |0 (DE-576)381064247  |4 aut 
700 1 |a Sedaghat-Hamedani, Farbod  |d 1984-  |e VerfasserIn  |0 (DE-588)102545488X  |0 (DE-627)722303106  |0 (DE-576)370367138  |4 aut 
700 1 |a Amr, Ali  |e VerfasserIn  |0 (DE-588)1060027348  |0 (DE-627)799162949  |0 (DE-576)416123317  |4 aut 
700 1 |a Haas, Jan  |e VerfasserIn  |0 (DE-588)1030297231  |0 (DE-627)735001251  |0 (DE-576)378095706  |4 aut 
700 1 |a Katus, Hugo  |d 1951-  |e VerfasserIn  |0 (DE-588)108916618  |0 (DE-627)577155040  |0 (DE-576)289625076  |4 aut 
700 1 |a Meder, Benjamin  |e VerfasserIn  |0 (DE-588)135821630  |0 (DE-627)571676316  |0 (DE-576)300664745  |4 aut 
700 1 |a Steidl, Stefan  |e VerfasserIn  |4 aut 
700 1 |a Hornegger, Joachim  |e VerfasserIn  |4 aut 
700 1 |a Comaniciu, Dorin  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Medical image analysis  |d Amsterdam [u.a.] : Elsevier Science, 1996  |g 34(2016), Seite 52-64  |h Online-Ressource  |w (DE-627)306365081  |w (DE-600)1497450-2  |w (DE-576)091204941  |x 1361-8423  |7 nnas  |a A self-taught artificial agent for multi-physics computational model personalization 
773 1 8 |g volume:34  |g year:2016  |g pages:52-64  |g extent:13  |a A self-taught artificial agent for multi-physics computational model personalization 
856 4 0 |u https://doi.org/10.1016/j.media.2016.04.003  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S1361841516300214  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20201009 
993 |a Article 
994 |a 2016 
998 |g 135821630  |a Meder, Benjamin  |m 135821630:Meder, Benjamin  |d 910000  |d 910100  |e 910000PM135821630  |e 910100PM135821630  |k 0/910000/  |k 1/910000/910100/  |p 10 
998 |g 108916618  |a Katus, Hugo  |m 108916618:Katus, Hugo  |d 910000  |d 910100  |e 910000PK108916618  |e 910100PK108916618  |k 0/910000/  |k 1/910000/910100/  |p 9 
998 |g 1030297231  |a Haas, Jan  |m 1030297231:Haas, Jan  |d 910000  |d 910100  |e 910000PH1030297231  |e 910100PH1030297231  |k 0/910000/  |k 1/910000/910100/  |p 8 
998 |g 1060027348  |a Amr, Ali  |m 1060027348:Amr, Ali  |d 910000  |d 910100  |e 910000PA1060027348  |e 910100PA1060027348  |k 0/910000/  |k 1/910000/910100/  |p 7 
998 |g 102545488X  |a Sedaghat-Hamedani, Farbod  |m 102545488X:Sedaghat-Hamedani, Farbod  |d 910000  |d 910100  |e 910000PS102545488X  |e 910100PS102545488X  |k 0/910000/  |k 1/910000/910100/  |p 6 
998 |g 1033468983  |a Kayvanpour, Elham  |m 1033468983:Kayvanpour, Elham  |d 910000  |d 910100  |e 910000PK1033468983  |e 910100PK1033468983  |k 0/910000/  |k 1/910000/910100/  |p 5 
999 |a KXP-PPN1735248533  |e 377391301X 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Dominik Neumann, Tommaso Mansi, Lucian Itu, Bogdan Georgescu, Elham Kayvanpour, Farbod Sedaghat-Hamedani, Ali Amr, Jan Haas, Hugo Katus, Benjamin Meder, Stefan Steidl, Joachim Hornegger, Dorin Comaniciu"]},"language":["eng"],"note":["Gesehen am 09.10.2020"],"recId":"1735248533","person":[{"family":"Neumann","role":"aut","display":"Neumann, Dominik","given":"Dominik"},{"family":"Mansi","role":"aut","given":"Tommaso","display":"Mansi, Tommaso"},{"family":"Itu","role":"aut","display":"Itu, Lucian","given":"Lucian"},{"given":"Bogdan","display":"Georgescu, Bogdan","role":"aut","family":"Georgescu"},{"display":"Kayvanpour, Elham","given":"Elham","family":"Kayvanpour","role":"aut"},{"role":"aut","family":"Sedaghat-Hamedani","display":"Sedaghat-Hamedani, Farbod","given":"Farbod"},{"role":"aut","family":"Amr","given":"Ali","display":"Amr, Ali"},{"display":"Haas, Jan","given":"Jan","family":"Haas","role":"aut"},{"family":"Katus","role":"aut","given":"Hugo","display":"Katus, Hugo"},{"family":"Meder","role":"aut","display":"Meder, Benjamin","given":"Benjamin"},{"given":"Stefan","display":"Steidl, Stefan","role":"aut","family":"Steidl"},{"role":"aut","family":"Hornegger","display":"Hornegger, Joachim","given":"Joachim"},{"display":"Comaniciu, Dorin","given":"Dorin","role":"aut","family":"Comaniciu"}],"id":{"doi":["10.1016/j.media.2016.04.003"],"eki":["1735248533"]},"physDesc":[{"extent":"13 S."}],"title":[{"title_sort":"self-taught artificial agent for multi-physics computational model personalization","title":"A self-taught artificial agent for multi-physics computational model personalization"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"21 April 2016","dateIssuedKey":"2016"}],"relHost":[{"id":{"eki":["306365081"],"issn":["1361-8423"],"zdb":["1497450-2"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Medical image analysis","title_sort":"Medical image analysis"}],"origin":[{"dateIssuedDisp":"1996-","publisher":"Elsevier Science","publisherPlace":"Amsterdam [u.a.]","dateIssuedKey":"1996"}],"recId":"306365081","disp":"A self-taught artificial agent for multi-physics computational model personalizationMedical image analysis","type":{"media":"Online-Ressource","bibl":"periodical"},"titleAlt":[{"title":"Medical image analysis online"}],"part":{"pages":"52-64","extent":"13","text":"34(2016), Seite 52-64","volume":"34","year":"2016"},"language":["eng"],"note":["Gesehen am 16.05.23"],"pubHistory":["1.1996/97 -"]}]} 
SRT |a NEUMANNDOMSELFTAUGHT2120