On the μ-invariant of fine Selmer groups
We give some examples of elliptic curves and modular forms with good ordinary reduction at a prime p such that the associated fine Selmer group defined over the cyclotomic Zp-extension of a certain number field has μ-invariant equal to zero, thus verifying a conjecture of Coates and Sujatha in [CS]....
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2014
|
| In: |
Journal of number theory
Year: 2013, Jahrgang: 135, Pages: 284-300 |
| ISSN: | 1096-1658 |
| DOI: | 10.1016/j.jnt.2013.08.003 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jnt.2013.08.003 Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0022314X13002151 |
| Verfasserangaben: | Chandrakant S Aribam |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1735350435 | ||
| 003 | DE-627 | ||
| 005 | 20220818222148.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 201012r20142013xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.jnt.2013.08.003 |2 doi | |
| 035 | |a (DE-627)1735350435 | ||
| 035 | |a (DE-599)KXP1735350435 | ||
| 035 | |a (OCoLC)1341368636 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Aribam, Chandrakant |e VerfasserIn |0 (DE-588)1191119408 |0 (DE-627)1669550834 |4 aut | |
| 245 | 1 | 0 | |a On the μ-invariant of fine Selmer groups |c Chandrakant S Aribam |
| 246 | 3 | 3 | |a On the mu-invariant of fine Selmer groups |
| 264 | 1 | |c 2014 | |
| 300 | |a 17 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Available online 25 October 2013 | ||
| 500 | |a Gesehen am 12.10.2020 | ||
| 520 | |a We give some examples of elliptic curves and modular forms with good ordinary reduction at a prime p such that the associated fine Selmer group defined over the cyclotomic Zp-extension of a certain number field has μ-invariant equal to zero, thus verifying a conjecture of Coates and Sujatha in [CS]. We also prove the conjecture for Galois representations associated to certain twists of CM cusp forms that arise from CM elliptic curves. | ||
| 534 | |c 2013 | ||
| 650 | 4 | |a -adic L-functions | |
| 650 | 4 | |a Fine Selmer groups | |
| 650 | 4 | |a Galois representations | |
| 650 | 4 | |a Hida theory | |
| 650 | 4 | |a Modular forms | |
| 650 | 4 | |a Selmer groups | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of number theory |d Orlando, Fla. : Elsevier, 1969 |g 135(2014), Seite 284-300 |h Online-Ressource |w (DE-627)267328192 |w (DE-600)1469778-6 |w (DE-576)103373241 |x 1096-1658 |7 nnas |a On the μ-invariant of fine Selmer groups |
| 773 | 1 | 8 | |g volume:135 |g year:2014 |g pages:284-300 |g extent:17 |a On the μ-invariant of fine Selmer groups |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.jnt.2013.08.003 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0022314X13002151 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20201012 | ||
| 993 | |a Article | ||
| 994 | |a 2014 | ||
| 998 | |g 1191119408 |a Aribam, Chandrakant |m 1191119408:Aribam, Chandrakant |d 110000 |e 110000PA1191119408 |k 0/110000/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1735350435 |e 3778807579 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Chandrakant S Aribam"]},"origin":[{"dateIssuedKey":"2014","dateIssuedDisp":"2014"}],"id":{"doi":["10.1016/j.jnt.2013.08.003"],"eki":["1735350435"]},"physDesc":[{"extent":"17 S."}],"relHost":[{"origin":[{"publisherPlace":"Orlando, Fla. ; New York, NY [u.a.] ; San Diego, Calif. [u.a.]","dateIssuedDisp":"1969-","dateIssuedKey":"1969","publisher":"Elsevier ; Acad. Pr. ; Acad. Press"}],"id":{"issn":["1096-1658"],"eki":["267328192"],"zdb":["1469778-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Journal of number theory","title":"Journal of number theory"}],"note":["Gesehen am 20.06.2023"],"disp":"On the μ-invariant of fine Selmer groupsJournal of number theory","type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"267328192","language":["eng"],"pubHistory":["1.1969 -"],"part":{"extent":"17","volume":"135","text":"135(2014), Seite 284-300","pages":"284-300","year":"2014"}}],"person":[{"display":"Aribam, Chandrakant","roleDisplay":"VerfasserIn","role":"aut","family":"Aribam","given":"Chandrakant"}],"title":[{"title":"On the μ-invariant of fine Selmer groups","title_sort":"On the μ-invariant of fine Selmer groups"}],"note":["Available online 25 October 2013","Gesehen am 12.10.2020"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1735350435","titleAlt":[{"title":"On the mu-invariant of fine Selmer groups"}]} | ||
| SRT | |a ARIBAMCHANONTHEINVAR2014 | ||