On the μ-invariant of fine Selmer groups

We give some examples of elliptic curves and modular forms with good ordinary reduction at a prime p such that the associated fine Selmer group defined over the cyclotomic Zp-extension of a certain number field has μ-invariant equal to zero, thus verifying a conjecture of Coates and Sujatha in [CS]....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Aribam, Chandrakant (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2014
In: Journal of number theory
Year: 2013, Jahrgang: 135, Pages: 284-300
ISSN:1096-1658
DOI:10.1016/j.jnt.2013.08.003
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jnt.2013.08.003
Verlag, lizenzpflichtig, Volltext: http://www.sciencedirect.com/science/article/pii/S0022314X13002151
Volltext
Verfasserangaben:Chandrakant S Aribam
Beschreibung
Zusammenfassung:We give some examples of elliptic curves and modular forms with good ordinary reduction at a prime p such that the associated fine Selmer group defined over the cyclotomic Zp-extension of a certain number field has μ-invariant equal to zero, thus verifying a conjecture of Coates and Sujatha in [CS]. We also prove the conjecture for Galois representations associated to certain twists of CM cusp forms that arise from CM elliptic curves.
Beschreibung:Available online 25 October 2013
Gesehen am 12.10.2020
Beschreibung:Online Resource
ISSN:1096-1658
DOI:10.1016/j.jnt.2013.08.003